全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-06-29_2021年,作为算法工程师的你们会在CV业务落地上用Transformer吗?

您的位置:首页 >> 新闻 >> 行业资讯

2021年,作为算法工程师的你们会在CV业务落地上用Transformer吗? 作者丨花花,OLDPAN来源丨知乎问答编辑丨极市平台【导读】众所周知,Transformer 已经日常在CV学术领域“杀疯了”,那么在工业领域情况如何呢?来源链接:https://www.zhihu.com/question/463585564/answer/1927466979 #回答一 作者:花花 阿里巴巴高级技术专家 来源链接:https://www.zhihu.com/question/463585564/answer/1927466979 分类任务:transformer在分类任务上超过cnn让大家欣喜若狂,用pretrain进行finetune是一件合理的事情,但可能大家也有意识到,imagenet-1k, imagenet-21k等pretrain的跨domain问题。 其次,实际项目中,包括模型转化,量化,SDK集成直到模型上线仍然有很大量的工作,链条不完善的情况下,不太容易落地,同时在inference速度上当前没有足够好的优化,也是一个劣势。 检测任务:说完分类再来考虑检测,目前两套思路,一种是换掉backbone,以pretrain的方式进行下游任务,部署难度和分类任务一样;另一种是类似DETR这种训练方式,想要取得较好的精度需要更大量的数据,对于实际项目并不容易获取,且训练相较于普通检测方法多了5到10倍的时间,在没有取得很明显的提升的情况下,也不太适合盲目进行落地。 值得一提的几点: 1. 在public dataset 上杀疯了并不代表在实际业务数据上就能很好的work,这点就不展开了,做过落地的都明白。 2. 当前另外一个方向是自监督+transformer(SSL+Transformer),个人认为非常有潜力,包括微软的swin-ssl,Facebook的dino等,都是这方面的尝试 3. 落地场景不同,情况就不同,人脸上亿量级的数据如果要train from scratch,要直接硬上transformer,计算资源是非常非常可观的。 个人一点不成熟的观点,轻喷: 我认为现在transformer还处于不成熟的阶段,大部分的工作都在分类任务上进行尝试,因为训练成本较高,部分paper的实验结果并不solid,提点也有限,虽然百花齐放但还没有一个较为统一的认知和共识,下游任务(detection,segmentation)的验证也不是很solid。同时底层硬件,CUDA,训练框架对transformer的优化也不够完善。 类比CNN的发展历程,我认为目前transformer在CV领域应该还处于AlexNet阶段,距ResNet阶段还有一定的距离,一方面是research这条线继续推陈出新,另一方面是工程部署这条线的持续跟进(可以看到很多社区的框架也在多分布式训练,transformer训练进行优化和加速)。 需要另一个里程碑来统一大家的认知 落地是肯定要落地的,大家一起加油。 #回答二 作者:OLDPAN 来源链接: https://www.zhihu.com/question/463585564/answer/1940309173 这个问题问得好呀,说不定楼主都已经踩过坑了 。 在我们组的CV中,识别组大部分的结构都包含transformer,也有一些LSTM和attention,其中有部分模型可以转化为tensorrt然后使用triton部署。相比原生的TensorFlow server要快些。不过仍有提升空间。 而检测组则没有使用transformer,一方面是因为原先的结构比较好部署(ssd,centernet,fcos等结构)比较熟悉,二是cv检测上的transformer结构还不是很成熟,没有比较通用性的backbone可以替换之前使用的resnet这类的通用backbone。 如果之后会使用transformer,我会考虑: 精度提升有多大,对于检测任务来说。如果不是质的提升(十分之一),尽量不考虑速度能有多快,相比resnet50,同等精度或者高于这个精度能有多快还是那句话,好不好部署,能否转化为tensorrt,转化后支不支持动态尺寸 这都是问题其实也简单尝试了一下swin transformer,目前可以转化为tensorrt但只支持固定尺寸,在分类任务上,swin最小结构的精度比res50要高些,但速度嘛,慢了一倍多 ,唉性价比瞬间降低了。 对于我们来说,用不用transformer,关键还是取决于精度和速度能否超过之前的backbone,性价比高不高。不高的话,大概率不会用…… 如果觉得有用,就请分享到朋友圈吧! 推荐阅读【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载! 分层级联Transformer!苏黎世联邦提出TransCNN: 显著降低了计算/空间复杂度! 清华姚班教师劝退文:读博,你真的想好了吗? 2021李宏毅老师最新40节机器学习课程!附课件+视频资料 最强通道注意力来啦!金字塔分割注意力模块,即插即用,效果显著,已开源! 登上更高峰!颜水成、程明明团队开源ViP,引入三维信息编码机制,无需卷积与注意力 常用 Normalization 方法的总结与思考:BN、LN、IN、GN 注意力可以使MLP完全替代CNN吗?未来有哪些研究方向? 清华鲁继文团队提出DynamicViT:一种高效的动态稀疏化Token的ViT 并非所有图像都值16x16个词--- 清华&华为提出一种自适应序列长度的动态ViT 重磅!DLer-计算机视觉&Transformer群已成立! 大家好,这是计算机视觉&Transformer论文分享群里,群里会第一时间发布最新的Transformer前沿论文解读及交流分享会,主要设计方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、视频超分、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。 进群请备注:研究方向+学校/公司+昵称(如Transformer+上交+小明) ??长按识别,邀请您进群!

上一篇:2024-12-13_这是付航今年拍过最好的广告 下一篇:2024-05-29_「打开春天的N种方式」 作品有奖征集活动获奖公布啦!

TAG标签:

16
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价