全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2020-04-03_官方文档太辣鸡?TensorFlow 2.0开源工具书,30天「无痛」上手

您的位置:首页 >> 新闻 >> 行业资讯

官方文档太辣鸡?TensorFlow 2.0开源工具书,30天「无痛」上手 机器之心报道 项目作者:lyhue1991「官方文档排布凌乱、搜索难用、API 丑陋不堪……」这是很多人对 TensorFlow 官方文档的吐槽。但吐槽归吐槽,到了工业界,你是无论如何也绕不开这个框架的。既然非学不可,那怎么让这个学习过程变得更加平滑呢?有人在 GitHub 开源了一个名为《30 天吃掉那只 TensorFlow2.0》的入门工具书,或许可以让你无痛上手 TensorFlow 2.0。 作者 lyhue1991 表示,这本书对「人类用户极其友善」,以「Don't let me think」为最高追求,「如果说通过学习 TensorFlow 官方文档掌握 TensorFlow2.0 的难度大概是 9 的话,那么通过学习本书掌握 TensorFlow2.0 的难度应该大概是 3。」该教程与 TensorFlow 的差异如下所示: 图片来自项目作者提供的开源文档。 从课程大纲来看,有一定基础的读者只需三十天就可以学完整个教程,而且每天都被安排得明明白白。 开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days 为什么一定要学 TensorFlow? 随着 PyTorch 热度的升高,越来越多的人似乎正在转向 PyTorch。与 TensorFlow 相比,PyTorch 在易用性方面占有更多优势,更加方便调试,满足了研究者快速迭代发表文章的需求,目前已经成为学术界使用的主流框架。在过去的 2019 年,几乎每个学术顶会都有大量论文用 PyTorch 实现。 但在工业界,TensorFlow 仍然是主导框架。原因在于,工业界最重要的是模型落地以及模型的高可用性,许多时候使用的都是成熟的模型架构,调试需求并不大。所以我们可能不得不面对这样一个现状:目前国内的大部分互联网企业只支持 TensorFlow 模型的在线部署,不支持 Pytorch。 所以作者指出,如果你是工程师,应该优先选 TensorFlow 2.0。 这本书面向哪些人群? 虽说是「仅用 30 天即可掌握 TensorFlow 2.0」,但学习这个教程也需要一定的知识储备作为前提。本书要求读者具备一定的机器学习和深度学习理论基础,同时使用过 Keras、Tensorflow1.0 或者 PyTorch 搭建训练过模型。 如果没有任何基础怎么办?你可以在学习本教程的同时参考深度学习大牛、Keras 之父 Francois Chollet 所著的《Python 深度学习》一书。这本书的优点在于,它假定读者无任何机器学习知识,全书没有一个数学公式,仅旨在培养读者的深度学习直觉。项目作者在 GitHub 界面提供了该书电子版的下载链接,读者可前往下载。 写作风格 鉴于 TensorFlow 的官方文档难用到令人发指,作者就将该书的底线定为「不刻意恶心读者」,声称对读者极其友好。具体而言,这本书有以下三大写作特点: 在参考 TensorFlow 官方文档和函数 doc 文档的基础上整理而成,但在篇章结构和范例选择上进行了大量的优化; 不同于 TensorFlow 官方文档中教程指南混杂的篇章结构,本书按照内容难易程度、读者检索习惯和 TensorFlow 自身的层次结构设计内容,循序渐进,层次清晰,从而方便读者按照功能快速查找相应范例; 不同于 TensorFlow 官方文档中冗长的范例代码,本书在范例设计上也尽可能地简约化和结构化,从而增强了范例的易读性和通用性,大部分代码片段在实践中也实现了即取即用。 课程大纲 学习环境配置 本书提供的所有学习内容均在 Jupyter 中编写,且在 TensorFlow 2.1 版本上全部测试通过。直接将项目克隆到本地,使用任意一款 markdown 软件即可查看。不过项目作者建议安装 jupytext,将 markdown 转换成 ipnb,之后就可以在 Jupyter 中交互式运行学习了。我们在 notebook 中运行如下代码,进行学习环境配置。 #克隆本书源码到本地,使用码云镜像仓库国内下载速度更快 !gitclonehttps://gitee.com/Python_Ai_Road/eat_tensorflow2_in_30_days #建议在jupyternotebook上安装jupytext,以便能够将本书各章节markdown文件视作ipynb文件运行 !pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simple-Ujupytext #建议在jupyternotebook上安装最新版本tensorflow测试本书中的代码 !pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simple-Utensorflow 在 notebook 中输入如下代码,查看 TensorFlow 版本并测试 TensorFlow 是否安装成功: importtensorflowastf #注:本书全部代码在tensorflow 2.1版本测试通过 tf.print("tensorflowversion:",tf.__version__) a=tf.constant("hello") b=tf.constant("tensorflow2") c=tf.strings.join([a,b],"") tf.print(c) 当看到如下输出时,说明 TensorFlow 已经成功安装并运行。接下来就可以愉快地开始课程学习了。 tensorflowversion:2.1.0 hellotensorflow2 课程内容一览 以下是本书的 30 天学习计划安排,作者很详细地列出了每一小节学习的难度以及大致的学习时间,可谓体贴入微。真正做到了作者追求的为读者着想,不炫技为难读者。 在前一周的时间里,作者主要为我们介绍了 TensorFlow 的建模流程、相关核心概念以及不同层次 API 概述,使读者对 TensorFlow 有一个全面准确的认识,为后续具体的学习内容打下基础。毕竟子曾经曰过「工欲善其事,必先利其器」嘛。 在接下来的两周左右时间里,作者分别为我们介绍了 TensorFlow 的低阶、中阶和高阶 API。其中,低阶 API 涵盖了张量的操作与运算、自动图机制。中阶 API 涵盖 Dataset、layers、损失函数和优化器等内容介绍。高阶 API 涵盖了模型的构建与训练、单 GPU/多 GPU/TPU 的使用和训练完成模型的部署。可以说你应该了解 TensorFlow 的所有内容都在本书里面了。 作者简介 GitHub 项目界面的「后记」文档显示,项目作者毕业于「北京吃饭大学」,学的是理论物理,原先在金融行业做量化交易,为了「改善伙食」一步步转行算法工程师。其间坚持自学并利用周末和晚上的时间录制教学课程。他的自我定位是「一个有毅力的吃货」,从书名也可以看出来。对项目作者感兴趣的读者可以去读一下「后记」文档。 本文为机器之心报道,转载请联系本公众号获得授权。 ?------------------------------------------------加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com投稿或寻求报道:content@jiqizhixin.com广告 & 商务合作:bd@jiqizhixin.com

上一篇:2019-04-18_速度提高100万倍,哈佛医学院大神提出可预测蛋白质结构的新型深度模型 下一篇:2022-04-14_网传微软亚研停招国防七子及北邮学生?对实习生影响较大

TAG标签:

17
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价