全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2019-07-20_想要了解图或图神经网络?没有比看论文更好的方式了

您的位置:首页 >> 新闻 >> 行业资讯

想要了解图或图神经网络?没有比看论文更好的方式了 机器之心编辑 参与:思源 图嵌入、图表征、图分类、图神经网络,这篇文章将介绍你需要的图建模论文,当然它们都有配套实现的。图是一种非常神奇的表示方式,生活中绝大多数的现象或情境都能用图来表示,例如人际关系网、道路交通网、信息互联网等等。正如马哲介绍事物具有普遍联系性,而图正好能捕捉这种联系,所以用它来描述这个世界是再好不过的方法。 但图这种结构化数据有个麻烦的地方,我们先要有图才能进行后续的计算。但图的搭建并不简单,目前也没有比较好的自动化方法,所以第一步还是需要挺多功夫的。只要各节点及边都确定了,那么图就是一种非常强大且复杂的工具,模型也能推断出图中的各种隐藏知识。 不同时期的图建模 其实,我们可以将图建模分为图神经网络与传统的图模型。其中以前的图建模主要借助 Graph Embedding 为不同的节点学习低维向量表征,这借鉴了 NLP 中词嵌入的思想。而图神经网络借助深度学习进行更强大的图运算与图表征。 Graph Embedding 算法聚焦在如何对网络节点进行低维向量表示,相似的节点在表征空间中更加接近。相比之下,GNN 最大的优势在于它不只可以对一个节点进行语义表示。 例如 GNN 可以表示子图的语义信息,将网络中一小部分节点构成的语义表示出来,这是以前 Graph Embedding 不容易做到的。GNN 还可以在整个图网络上进行信息传播、聚合等建模,也就是说它可以把图网络当成一个整体进行建模。此外,GNN 对单个节点的表示也可以做得更好,因为它可以更好地建模周围节点丰富信息。 在传统图建模中,随机游走、最短路径等图方法会利用符号知识,但这些方法并没有办法很好地利用每个节点的语义信息。而深度学习技术更擅长处理非结构文本、图像等数据。简言之,我们可以将 GNN 看做将深度学习技术应用到符号表示的图数据上,或者说是从非结构化数据扩展到了结构化数据。GNN 能够充分融合符号表示和低维向量表示,发挥两者优势。 图建模论文与代码 在 GitHub 的一项开源工作中,开发者收集了图建模相关的论文与实现,并且从经典的 Graph Embedding、Graph Kernel 到图神经网络都有涉及。它们在图嵌入、图分类、图表征等领域都是非常重要的论文。 项目地址:https://github.com/benedekrozemberczki/awesome-graph-classification 该项目主要收集的论文领域如下所示: 1. Factorization 2. Spectral and Statistical Fingerprints 3. Graph Neural Network 4. Graph Kernels 因式分解法 Learning Graph Representation via Frequent Subgraphs (SDM 2018) Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung Paper:https://epubs.siam.org/doi/10.1137/1.9781611975321.35 Python:https://github.com/nphdang/GE-FSG Anonymous Walk Embeddings (ICML 2018) Sergey Ivanov and Evgeny Burnaev Paper:https://arxiv.org/pdf/1805.11921.pdf Python:https://github.com/nd7141/AWE Graph2vec (MLGWorkshop 2017) Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan Paper:https://arxiv.org/abs/1707.05005 Python High Performance:https://github.com/benedekrozemberczki/graph2vec Python Reference:https://github.com/MLDroid/graph2vec_tf Subgraph2vec (MLGWorkshop 2016) Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan Paper:https://arxiv.org/abs/1606.08928 Python High Performance:https://github.com/MLDroid/subgraph2vec_gensim Python Reference:https://github.com/MLDroid/subgraph2vec_tf Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016) Petar Ristoski and Heiko Paulheim Paper:https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30 Python Reference:https://github.com/airobert/RDF2VecAtWebScale Deep Graph Kernels (KDD 2015) Pinar Yanardag and S.V.N. Vishwanathan Paper:https://dl.acm.org/citation.cfm?id=2783417 Python Reference:https://github.com/pankajk/Deep-Graph-Kernels Spectral and Statistical Fingerprints A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019) Chen Cai, Yusu Wang Paper:https://arxiv.org/abs/1811.03508 Python Reference:https://github.com/Chen-Cai-OSU/LDP NetLSD (KDD 2018) Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller Paper:https://arxiv.org/abs/1805.10712 Python Reference:https://github.com/xgfs/NetLSD A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018) Nathan de Lara and Edouard Pineau Paper:https://arxiv.org/pdf/1810.09155.pdf Python Reference:https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018) Zixuan Zhu and Yuhai Zhao Paper:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf Python Reference:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017) Saurabh Verma and Zhi-Li Zhang Paper:https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf Python Reference:https://github.com/vermaMachineLearning/FGSD Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015) Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz Paper:https://ieeexplore.ieee.org/document/7302040 Java Reference:https://github.com/shiruipan/MTG NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012) Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos Paper:https://arxiv.org/abs/1209.2684 Python:https://github.com/kristyspatel/Netsimile 图神经网络 Self-Attention Graph Pooling (ICML 2019) Junhyun Lee, Inyeop Lee, Jaewoo Kang Paper:https://arxiv.org/abs/1904.08082 Python Reference:https://github.com/inyeoplee77/SAGPool Variational Recurrent Neural Networks for Graph Classification (ICLR 2019) Edouard Pineau, Nathan de Lara Paper:https://arxiv.org/abs/1902.02721 Python Reference:https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019) Takenori Yamamoto Paper:https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf Python Reference:https://github.com/Tony-Y/cgnn Explainability Techniques for Graph Convolutional Networks (ICML 2019) Federico Baldassarre, Hossein Azizpour Paper:https://128.84.21.199/pdf/1905.13686.pdf Python Reference:https://github.com/gn-exp/gn-exp Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang Paper:https://arxiv.org/pdf/1904.05003.pdf Python Reference:https://github.com/benedekrozemberczki/SEAL-CI Capsule Graph Neural Network (ICLR 2019) Zhang Xinyi and Lihui Chen Paper:https://openreview.net/forum?id=Byl8BnRcYm Python Reference:https://github.com/benedekrozemberczki/CapsGNN How Powerful are Graph Neural Networks? (ICLR 2019) Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka Paper:https://arxiv.org/abs/1810.00826 Python Reference:https://github.com/weihua916/powerful-gnns Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019) Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe Paper:https://arxiv.org/pdf/1810.02244v2.pdf Python Reference:https://github.com/k-gnn/k-gnn Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019) Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley Paper:https://arxiv.org/pdf/1902.08399v1.pdf Python Reference:https://github.com/BraintreeLtd/PatchyCapsules Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018) Hyeoncheol Cho and Insung. S. Choi Paper:https://arxiv.org/abs/1811.09794 Python Reference:https://github.com/blackmints/3DGCN Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018) Yu Jin and Joseph F. JaJa Paper:https://arxiv.org/pdf/1805.07683v4.pdf Python Reference:https://github.com/yuj-umd/graphRNN Graph Capsule Convolutional Neural Networks (ICML 2018) Saurabh Verma and Zhi-Li Zhang Paper:https://arxiv.org/abs/1805.08090 Python Reference:https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks Graph Classification Using Structural Attention (KDD 2018) John Boaz Lee, Ryan Rossi, and Xiangnan Kong Paper:http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf Python Pytorch Reference:https://github.com/benedekrozemberczki/GAM Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018) Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec Paper:https://arxiv.org/abs/1806.02473 Python Reference:https://github.com/bowenliu16/rl_graph_generation Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018) Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec Paper:http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf Python Reference:https://github.com/rusty1s/pytorch_geometric Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018) Davide Bacciu, Federico Errica, and Alessio Micheli Paper:https://arxiv.org/pdf/1805.10636.pdf Python Reference:https://github.com/diningphil/CGMM MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018) Nicola De Cao and Thomas Kipf Paper:https://arxiv.org/pdf/1805.11973.pdf Python Reference:https://github.com/nicola-decao/MolGAN Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018) Seongok Ryu, Jaechang Lim, and Woo Youn Kim Paper:https://arxiv.org/abs/1805.10988 Python Reference:https://github.com/SeongokRyu/Molecular-GAT Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018) Masashi Tsubaki, Kentaro Tomii, and Jun Sese Paper:https://academic.oup.com/bioinformatics/article/35/2/309/5050020 Python Reference:https://github.com/masashitsubaki/CPI_prediction Python Reference:https://github.com/masashitsubaki/GNN_molecules Python Alternative:https://github.com/xnuohz/GCNDTI Learning Graph Distances with Message Passing Neural Networks (ICPR 2018) Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes Paper:https://ieeexplore.ieee.org/abstract/document/8545310 Python Reference:https://github.com/priba/siamese_ged Edge Attention-based Multi-Relational Graph Convolutional Networks (2018) Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi Paper:https://arxiv.org/abs/1802.04944v1 Python Reference:https://github.com/Luckick/EAGCN Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018) Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu Paper:http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf Python Reference:https://github.com/tuxchow/ccm Residual Gated Graph ConvNets (ICLR 2018) Xavier Bresson and Thomas Laurent Paper:https://arxiv.org/pdf/1711.07553v2.pdf Python Pytorch Reference:https://github.com/xbresson/spatial_graph_convnets An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018) Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen Paper:https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf Python Tensorflow Reference:https://github.com/muhanzhang/DGCNN Python Pytorch Reference:https://github.com/muhanzhang/pytorch_DGCNN MATLAB Reference:https://github.com/muhanzhang/DGCNN Python Alternative:https://github.com/leftthomas/DGCNN Python Alternative:https://github.com/hitlic/DGCNN-tensorflow SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018) Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller Paper:https://arxiv.org/abs/1807.02839 Python Reference:http://mott.in/publications/others/sgr/ Deep Learning with Topological Signatures (NIPS 2017) Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl paper:https://arxiv.org/abs/1707.04041 Python Reference:https://github.com/c-hofer/nips2017 Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017) Martin Simonovsky and Nikos Komodakis paper:https://arxiv.org/pdf/1704.02901v3.pdf Python Reference:https://github.com/mys007/ecc Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017) Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola Paper:https://arxiv.org/abs/1705.09037 Python Reference:https://github.com/taolei87/icml17_knn Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017) Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur Paper:https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks Python Reference:https://github.com/fouticus/pipgcn Graph Classification with 2D Convolutional Neural Networks (2017) Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis Paper:https://arxiv.org/abs/1708.02218 Python Reference:https://github.com/Tixierae/graph_2D_CNN CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017) Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein Paper:https://arxiv.org/pdf/1705.07664v2.pdf Python Reference:https://github.com/fmonti/CayleyNet Semi-supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017) Hai Nguyen, Shin-ichi Maeda, Kenta Oono Paper:https://arxiv.org/pdf/1711.10168.pdf Python Reference:https://github.com/pfnet-research/hierarchical-molecular-learning Kernel Graph Convolutional Neural Networks (2017) Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis Paper:https://arxiv.org/pdf/1710.10689.pdf Python Reference:https://github.com/giannisnik/cnn-graph-classification Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016) Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough Paper:https://ieeexplore.ieee.org/document/7840988/ Python Reference:https://github.com/sbonner0/DeepTopologyClassification Learning Convolutional Neural Networks for Graphs (ICML 2016) Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov Paper:https://arxiv.org/abs/1605.05273 Python Reference:https://github.com/tvayer/PSCN Gated Graph Sequence Neural Networks (ICLR 2016) Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel Paper:https://arxiv.org/abs/1511.05493 Python TensorFlow:https://github.com/bdqnghi/ggnn.tensorflow Python PyTorch:https://github.com/JamesChuanggg/ggnn.pytorch Python Reference:https://github.com/YunjaeChoi/ggnnmols Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015) David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams Paper:https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf Python Reference:https://github.com/fllinares/neural_fingerprints_tf Python Reference:https://github.com/jacklin18/neural-fingerprint-in-GNN Python Reference:https://github.com/HIPS/neural-fingerprint Python Reference:https://github.com/debbiemarkslab/neural-fingerprint-theano Graph Kernels Message Passing Graph Kernels (2018) Giannis Nikolentzos, Michalis Vazirgiannis Paper:https://arxiv.org/pdf/1808.02510.pdf Python Reference:https://github.com/giannisnik/message_passing_graph_kernels Matching Node Embeddings for Graph Similarity (AAAI 2017) Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis Paper:https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494 Global Weisfeiler-Lehman Graph Kernels (2017) Christopher Morris, Kristian Kersting and Petra Mutzel Paper:https://arxiv.org/pdf/1703.02379.pdf C++ Reference:https://github.com/chrsmrrs/glocalwl On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016) Nils Kriege, Pierre-Louis Giscard, Richard Wilson Paper:https://arxiv.org/pdf/1606.01141.pdf Java Reference:https://github.com/nlskrg/optimal_assignment_kernels Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016) Stephen Bonner, John Brennan, and A. Stephen McGough Paper:http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt python Reference:https://github.com/sbonner0/GraphFingerprintComparison The Multiscale Laplacian Graph Kernel (NIPS 2016) Risi Kondor and Horace Pan Paper:https://arxiv.org/abs/1603.06186 C++ Reference:https://github.com/horacepan/MLGkernel Faster Kernels for Graphs with Continuous Attributes (ICDM 2016) Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel Paper:https://arxiv.org/abs/1610.00064 Python Reference:https://github.com/chrsmrrs/hashgraphkernel Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016) Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian Paper:https://link.springer.com/article/10.1007/s10994-015-5517-9 Matlab Reference:https://github.com/marionmari/propagation_kernels Halting Random Walk Kernels (NIPS 2015) Mahito Sugiyama and Karsten M. Borgward Paper:https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf C++ Reference:https://github.com/BorgwardtLab/graph-kernels Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013) Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt Paper:https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf Subgraph Matching Kernels for Attributed Graphs (ICML 2012) Nils Kriege and Petra Mutzel Paper:https://arxiv.org/abs/1206.6483 Python Reference:https://github.com/mockingbird2/GraphKernelBenchmark Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012) Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang Paper:https://ieeexplore.ieee.org/document/6413884/ Python Reference:https://github.com/benedekrozemberczki/NestedSubtreeHash Weisfeiler-Lehman Graph Kernels (JMLR 2011) Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt Paper:http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf Python Reference:https://github.com/jajupmochi/py-graph Python Reference:https://github.com/deeplego/wl-graph-kernels C++ Reference:https://github.com/BorgwardtLab/graph-kernels Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010) Fabrizio Costa and Kurt De Grave Paper:https://icml.cc/Conferences/2010/papers/347.pdf C++ Reference:https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz Python Reference:https://github.com/fabriziocosta/EDeN A Linear-time Graph Kernel (ICDM 2009) Shohei Hido and Hisashi Kashima Paper:https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243 Python Reference:https://github.com/hgascon/adagio Weisfeiler-Lehman Subtree Kernels (NIPS 2009) Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt Paper:http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf Python Reference:https://github.com/jajupmochi/py-graph Python Reference:https://github.com/deeplego/wl-graph-kernels C++ Reference:https://github.com/BorgwardtLab/graph-kernels Fast Computation of Graph Kernels (NIPS 2006) S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph Paper:http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf Python Reference:https://github.com/jajupmochi/py-graph C++ Reference:https://github.com/BorgwardtLab/graph-kernels Shortest-Path Kernels on Graphs (ICDM 2005) Karsten M. Borgwardt and Hans-Peter Kriegel Paper:https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf C++ Reference:https://github.com/KitwareMedical/ITKTubeTK Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004) Tamás Horváth, Thomas G?rtner, and Stefan Wrobel Paper:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf Python Reference:https://github.com/jajupmochi/py-graph Extensions of Marginalized Graph Kernels (ICML 2004) Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert Paper:http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf Python Reference:https://github.com/jajupmochi/py-graph Marginalized Kernels Between Labeled Graphs (ICML 2003) Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi Paper:https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf Python Reference:https://github.com/jajupmochi/py-graph 本文为机器之心编辑,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com 投稿或寻求报道:content@jiqizhixin.com 广告 & 商务合作:bd@jiqizhixin.com

上一篇:2021-09-16_DeepMind联合UCL,推出2021强化学习最新课程 下一篇:2018-06-29_今晚一块儿去成人用品店门口走一遭!

TAG标签:

15
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价