全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2024-02-28_知名AI研究者深挖谷歌Gemma:参数不止70亿,设计原则很独特

您的位置:首页 >> 新闻 >> 行业资讯

知名AI研究者深挖谷歌Gemma:参数不止70亿,设计原则很独特 机器之心报道 编辑:陈萍、杜伟想要了解谷歌 Gemma 与 Llama 2、Mistral 有哪些异同吗?这篇文章值得一读。 就在几天前,开源大模型领域迎来了重磅新玩家:谷歌推出了全新的开源模型系列「Gemma」。相比 Gemini,Gemma 更加轻量,同时保持免费可用,模型权重也一并开源了,且允许商用。 谷歌发布了包含两种权重规模的模型:Gemma 2B 和 Gemma 7B。尽管体量较小,但 Gemma 已经「在关键基准测试中明显超越了更大的模型」,包括 Llama-2 7B 和 13B,以及风头正劲的 Mistral 7B。与此同时,关于 Gemma 的技术报告也一并放出。 相信大家已经对 Gemma 的相关内容进行了系统研究,本文知名机器学习与 AI 研究者 Sebastian Raschka 向我们介绍了 Gemma 相比于其他 LLM 的一些独特设计原则。 Raschka 首先从模型性能展开,他表示看过技术报告的小伙伴可能都有一个疑问,是什么让 Gemma 表现如此出色?论文中没有明确说明原因,Sebastian Raschka 认为可以从下面两点得出结论: 首先是词汇量大,Gemma 词汇量达到 256000 个单词,相比之下,Llama 的词汇量为 32000 个单词;其次是训练数据集达 6 万亿 token,作为对比,Llama 仅接受了其中三分之一的训练。 在架构方面,Raschka 列举了 Gemma 与 LLama 2 7B 和 OLMo 7B 的架构概览。 在模型大小上,Raschka 表示 Gemma 2B 有多查询注意力,而 Gemma 7B 没有。另外,与 Llama 2 相比,Gemma 7B 具有相对较大的前馈层,尽管其层数较少(28 VS 32),但 Gemma 中的参数数量却相当大。 Raschka 猜测 Gemma 7B 实际上总共有 93 亿个参数,如果考虑到权重共享(Weight tying)的话,则有 85 亿个参数。权重共享意味着模型在输入嵌入和输出投影层中共享相同的权重,类似于 GPT-2 和 OLMo 1B(OLMO 7B 的训练没有权重共享)。 归一化层 另一个引人注目的细节是以下出自 Gemma 论文中的段落。 归一化位置。谷歌对每个 transformer 子层的输入和输出进行归一化,这与单独归一化输入或输出的标准做法不同。谷歌使用 RMSNorm 作为归一化层。 乍一看,看起来像 Gemma 在每个 transformer 块之后都有一个额外的 RMSNorm 层。但是,通过查看「keras-nlp」项目的官方代码实现,原来 Gemma 仅仅使用了 GPT-2、Llama 2 等其他 LLM 使用的常规预归一化方案,具体如下图所示。 GPT、Llama 2 和其他 LLM 中典型的层归一化位置,Gemma 中没有什么新东西。来源:https://github.com/rasbt/LLMs-from-scratch GeGLU 激活 Gemma 与其他架构之间的一大区别是它使用了 GeGLU 激活,而 GeGLU 激活是在 2020 年的谷歌论文《GLU Variants Improve Transformer》中提出的。 论文地址:https://arxiv.org/pdf/2002.05202.pdf GeLU 全称为高斯误差线性单元(Gaussian Error Linear Unit),它是一个激活函数,越来越多地被作为传统 ReLU 的替代方案。GeLU 的流行得益于它有能力引入非线性特征,并允许为负输入值执行梯度传播,这解决了 ReLU 的一大局限,完全阻断了负值。 现在,作为 GeLU 的门线性单元变体,GeGLU 的激活被分割为两部分,分别是 sigmoid 单元和线性映射单元(它与 sigmoid 单元的输出逐元素相乘),具体如下图所示。 GeLU 与 ReLU 激活函数图示比较,来源:https://github.com/rasbt/LLMs-from-scratch 同时,GeGLU 与 Llama 2、Mistral 等其他 LLM 使用的 SwiGLU 激活类似。唯一的区别是 GeGLU 使用的基础激活是 GeLU 而不是 Swish。 下图展示了 GeLU(GPT-2)、SwiGLU(Llama 2)和 GeGLU(Gemma)的伪代码。 需要注意,与使用 GeLU(仅线性)的常规前馈模块相比,使用 SwiGLU 和 GeGLU 的前馈模块各多了一个线性层(分别是 linear_1 和 linear_2)。不过,在 SwiGLU 和 GeGLU 前馈模块中,linear_1 和 linear_2 通常通过将单个线性层分割为两部分而获得,因此不会增加参数规模。 那是否 GeGLU 就比 SwiGLU 强呢?并没有消融实验来证实这一点。Raschka 猜测谷歌选择使用 GeGLU,只是为了让 Gemma 与 Llama 2 略有不同。 举例而言,Gemma 为 RMSNorm 层添加了 + 1 的偏移量,并通过隐藏层维数的开立方根来归一化嵌入。Gemma 论文中没有提及或讨论这些细节,所以它们的重要性也不清楚。 结论 对于开源 LLM 而言,Gemma 做出了非常棒的贡献,展示了 7B 参数规模也能成就强大的模型,并有潜力在真实世界的用例中取代 Llama 2 和 Mistral。 此外,目前 7B 大小规模的开源模型已经有很多了,因此 Gemma 2B 更加有趣,它可以轻松地在单个 GPU 上运行。当然,Gemma 2B 与 2.7B 大小的 phi-2 之间的对比也将会很有趣。 参考链接:https://lightning.ai/lightning-ai/studios/understanding-using-and-finetuning-gemma ?THE END 转载请联系本公众号获得授权 投稿或寻求报道:content@jiqizhixin.com

上一篇:2023-07-14_京东大模型:「知识」就是力量 下一篇:2024-06-12_广告人求职攻略(运营篇):对话8家头部代理商,助你拿捏好工作

TAG标签:

13
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价