全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2023-08-07_清华发布SmartMoE:一键实现高性能MoE稀疏大模型分布式训练

您的位置:首页 >> 新闻 >> 行业资讯

清华发布SmartMoE:一键实现高性能MoE稀疏大模型分布式训练 机器之心专栏机器之心编辑部PACMAN 实验室探索大模型分布式训练系统再出新成果。2023 年 7 月,清华大学计算机系 PACMAN 实验室发布稀疏大模型训练系统 SmartMoE,支持用户一键实现 MoE 模型分布式训练,通过自动搜索复杂并行策略,达到开源 MoE 训练系统领先性能。同时,PACMAN 实验室在国际顶级系统会议 USENIX ATC’23 发表长文,作者包括博士生翟明书、何家傲等,通讯作者为翟季冬教授。PACMAN 实验室在机器学习系统领域持续深入研究,SmartMoE 是继 FastMoE, FasterMoE 和 “八卦炉” 后在大模型分布式训练系统上的又一次探索。欲了解更多相关成果可查看翟季冬教授首页:https://pacman.cs.tsinghua.edu.cn/~zjd Mixture-of-Experts (MoE) 是一种模型稀疏化技术,因其高效扩展大模型参数量的特性而备受研究者关注。为了提高 MoE 模型的易用性、优化 MoE 模型训练性能,PACMAN 实验室在 MoE 大模型训练系统上进行了系统深入的研究。2021 年初,开源发布了 FastMoE 系统,它是第一个基于 PyTorch 的 MoE 分布式训练系统开源实现,在业界产生了较大的影响力。进一步,为了解决专家并行的稀疏、动态计算模式带来的严重性能问题,FasterMoE 系统地分析、优化了专家并行策略。FasterMoE 中设计的「影子专家」技术显著缓解了负载不均问题、通信 - 计算协同调度算法有效隐藏了 all-to-all 通信的高延迟。FasterMoE 成果发表在 PPoPP’22 国际会议。 论文地址:https://www.usenix.org/system/files/atc23-zhai.pdf 项目地址:https://github.com/zms1999/SmartMoE MoE 模型遇到的难题 不同于稠密模型直接通过增大模型尺寸实现扩展,如图一所示,MoE 技术通过将一个小模型转变为多个稀疏激活的小模型实现参数扩展。由于各个专家在训练时稀疏激活,MoE 模型得以在不增加每轮迭代计算量的前提下增加模型参数量;从而有望在相同训练时间内获得更强的模型能力。 图一:通过 MoE 技术扩展模型规模 为了实现 MoE 大模型的分布式训练,业界提出了专家并行(Expert Parallelism)技术。如图二所示,各个专家被分布式地存储在不同节点上,在训练过程中通过 all-to-all 通信将训练数据发送至对应专家所在节点。专家并行相较于数据并行(Data Parallelism)有更小的内存开销,因为专家参数无冗余存储。可以认为专家并行是一种针对 MoE 结构的模型并行(Model Parallelism)。 图二:专家并行示意图 然而,使用朴素的专家并行技术训练 MoE 模型有严重的性能问题,其根因是 MoE 模型的稀疏激活模式。它会导致节点间产生大量不规则 all-to-all 通信增加延迟、计算量负载不均造成硬件利用率低。如图三所示的真实模型训练过程中的专家选择分布,可以观察到专家间显著的负载不均现象,且分布随训练进行动态变化。 图三:真实训练中的专家选择分布 随着学界对各并行策略的深入研究,使用各并行策略的复杂组合(称为混合并行)进行大模型训练成为必要模式。混合并行的策略调优过程十分复杂,为了提高可用性,学界提出了自动并行算法自动搜索、调优混合并行策略。然而,现有混合并行、自动并行系统无法高效处理 MoE 大模型,他们缺少对 MoE 模型训练稀疏激活、计算负载不均且动态变化的特征的针对性设计。 SmartMoE带来解决方案 为了实现 MoE 模型的高效训练,SmartMoE 系统对 MoE 模型的分布式训练策略进行了全面的支持。对于常用的四种并行策略(数据并行、流水线并行、模型并行和专家并行),SmartMoE 系统做出了全面的支持,允许用户对它们任意组合;在论文投稿时(2023 年 1 月),尚未有其他系统能做到这一点(如图四所示)。 为了处理 MoE 的动态计算负载,SmartMoE 独特设计了专家放置(Expert Placement)策略,在经典并行策略组合的基础上,实现了动态负载均衡。如图五所示,MoE 模型不同的计算负载(workload)会造成不同专家的过载;使用不同的专家放置顺序,能在特定负载下实现节点间负载均衡。 图四:开源分布式系统对各并行策略的支持情况对比 图五:不同 MoE 训练负载需要不同专家放置策略 为了提高 MoE 模型复杂混合并行策略的易用性,SmartMoE 设计了一套轻量级且有效的两阶段自动并行算法。现有自动并行系统只能在训练开始前进行策略搜索,无法根据负载情况动态调整策略。简单的将现有自动并行搜索算法在训练过程中周期性使用亦不可行,因为训练过程中的并行策略搜索和调整对延迟要求很高,现有算法的开销过大。 SmartMoE 独创性地将自动并行搜索过程分为两阶段: 训练开始前,使用经典算法搜索,获得一个较小的候选策略集合训练过程中,根据当前负载,在候选策略集合中动态调整,由于候选策略集合大小有限,此过程的开销可以得到控制。 最终,SmartMoE 实现了轻量级且有效的自动并行,达到了业界领先的性能。 在性能测试中,SmartMoE 在不同模型结构、集群环境和规模下均有优异的表现。例如,在 GPT-MoE 模型的训练性能测试中,相较于 FasterMoE,SmartMoE 有最高 1.88x 的加速比。值得注意的,在对每一轮迭代的性能观察中发现,动态的并行策略调整是必要的,且需要使用合适的调整频率,如图六所示。更多实验细节请参考论文原文。 图六:MoE 模型在不同迭代的运行时间。”dyn.X” 表示每 X 轮进行一次策略调整。 图七:SmartMoE 在 GPT-MoE 模型端到端训练中的性能提升 结语 SmartMoE 现已开源,开发者维护活跃,且仍在持续优化迭代,助力 MoE 大模型的发展。这是 PACMAN 实验室继 FastMoE,[PPoPP’22] FasterMoE,[PPoPP’22] BaGuaLu 后在大模型分布式训练系统上的又一次探索。 ?THE END 转载请联系本公众号获得授权 投稿或寻求报道:content@jiqizhixin.com

上一篇:2020-01-30_即使城市封闭,也隔离不了爱 下一篇:2025-06-30_创意陷入信心危机?2025戛纳创意节给出破局答案

TAG标签:

17
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价