全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2022-03-27_CVPR2022最新106篇论文整理|包含目标检测、动作识别、图像处理等32个方向

您的位置:首页 >> 新闻 >> 行业资讯

CVPR2022最新106篇论文整理|包含目标检测、动作识别、图像处理等32个方向 转自:极市平台分类目录: 检测类 2D目标检测 3D目标检测 伪装目标检测 显著性目标检测 边缘检测 消失点检测 分割类 图像分割 语义分割 视频目标分割 人脸 人脸生成 人脸检测 图像处理 图像复原 图像编辑/图像修复 图像翻译 超分辨率 去噪/去模糊/去雨去雾 风格迁移 三维视觉 三维重建 场景重建/视图合成 点云 神经网络架构设计 CNN Transformer MLP 神经网络架构搜索 人体解析/人体姿态估计 动作识别/检测 视觉定位/位姿估计 光流/运动估计 医学影像 文本理解 GAN/生成式/对抗式 视频检索 图像&视频生成/合成 视觉推理/视觉问答 视觉预测 图像计数 机器人 多模态学习 视觉-语言 自监督/半监督/无监督学习 联邦学习 度量学习 增量学习 迁移学习/domain/自适应 对比学习 主动学习 数据处理 图像压缩 图像聚类 视觉表征学习 模型训练/泛化 噪声标签 模型压缩 知识蒸馏 剪枝 量化 数据集 01 检测类2D目标检测[1] MUM : Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection(混合图像块和 UnMix 特征块用于半监督目标检测) paper:https://arxiv.org/abs/2111.10958 code:https://github.com/JongMokKim/mix-unmix [2] SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection(域自适应对象检测的语义完全图匹配) paper:https://arxiv.org/abs/2203.06398 code:https://github.com/CityU-AIM-Group/SIGMA [3] Accelerating DETR Convergence via Semantic-Aligned Matching(通过语义对齐匹配加速 DETR 收敛) paper:https://arxiv.org/abs/2203.06883 code:https://github.com/ZhangGongjie/SAM-DETR 3D目标检测[1] MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection(单目 3D 目标检测的联合语义和几何成本量) paper:https://arxiv.org/abs/2203.08563 code:https://github.com/lianqing11/MonoJSG [2] DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection(用于多模态 3D 目标检测的激光雷达相机深度融合) paper:https://arxiv.org/abs/2203.08195 code:https://github.com/tensorflow/lingvo/tree/master/lingvo/ [3] Point Density-Aware Voxels for LiDAR 3D Object Detection(用于 LiDAR 3D 对象检测的点密度感知体素) paper:https://arxiv.org/abs/2203.05662 code:https://github.com/TRAILab/PDV 伪装目标检测[1] Implicit Motion Handling for Video Camouflaged Object Detection(视频伪装对象检测的隐式运动处理) paper:https://arxiv.org/abs/2203.07363 dataset:https://xueliancheng.github.io/SLT-Net-project 显著性目标检测[1] Bi-directional Object-context Prioritization Learning for Saliency Ranking(显著性排名的双向对象上下文优先级学习) paper:https://arxiv.org/abs/2203.09416 code:https://github.com/GrassBro/OCOR [2] Democracy Does Matter: Comprehensive Feature Mining for Co-Salient Object Detection(共同显著性目标检测的综合特征挖掘) paper:https://arxiv.org/abs/2203.05787 边缘检测[1] EDTER: Edge Detection with Transformer(使用transformer的边缘检测) paper:https://arxiv.org/abs/2203.08566 消失点检测[1] Deep vanishing point detection: Geometric priors make dataset variations vanish(深度消失点检测:几何先验使数据集变化消失) paper:https://arxiv.org/abs/2203.08586 code:https://github.com/yanconglin/VanishingPoint_HoughTransform_GaussianSphere 02 分割类图像分割[1] Learning What Not to Segment: A New Perspective on Few-Shot Segmentation(学习不分割的内容:关于小样本分割的新视角) paper:https://arxiv.org/abs/2203.07615 code:http://github.com/chunbolang/BAM [2] CRIS: CLIP-Driven Referring Image Segmentation(CLIP 驱动的参考图像分割) paper:https://arxiv.org/abs/2111.15174 [3] Hyperbolic Image Segmentation(双曲线图像分割) paper:https://arxiv.org/abs/2203.05898 语义分割[1] Scribble-Supervised LiDAR Semantic Segmentation paper:https://arxiv.org/abs/2203.08537 code:http://github.com/ouenal/scribblekitti [2] ADAS: A Direct Adaptation Strategy for Multi-Target Domain Adaptive Semantic Segmentation(多目标域自适应语义分割的直接适应策略) paper:https://arxiv.org/abs/2203.06811 [3] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast(通过像素到原型对比的弱监督语义分割) paper:https://arxiv.org/abs/2110.07110 视频目标分割[1] Language as Queries for Referring Video Object Segmentation(语言作为引用视频对象分割的查询) paper:https://arxiv.org/abs/2201.00487 code:https://github.com/wjn922/ReferFormer 03 人脸[1] FaceFormer: Speech-Driven 3D Facial Animation with Transformers(FaceFormer:带有transformer的语音驱动的 3D 面部动画) paper:https://arxiv.org/abs/2112.05329 code:https://evelynfan.github.io/audio2face/ [2] Sparse Local Patch Transformer for Robust Face Alignment and Landmarks Inherent Relation Learning(用于鲁棒人脸对齐和地标固有关系学习的稀疏局部补丁transformer) paper:https://arxiv.org/abs/2203.06541 code:https://github.com/Jiahao-UTS/SLPT-master 人脸生成[1] GCFSR: a Generative and Controllable Face Super Resolution Method Without Facial and GAN Priors(一种没有面部和 GAN 先验的生成可控人脸超分辨率方法) paper:https://arxiv.org/abs/2203.07319 人脸检测[1] Privacy-preserving Online AutoML for Domain-Specific Face Detection(用于特定领域人脸检测的隐私保护在线 AutoML) paper:https://arxiv.org/abs/2203.08399 04 图像处理图像复原[1] Restormer: Efficient Transformer for High-Resolution Image Restoration(用于高分辨率图像复原的高效transformer) paper:https://arxiv.org/abs/2111.09881 code:https://github.com/swz30/Restormer 图像编辑/图像修复[1] High-Fidelity GAN Inversion for Image Attribute Editing(用于图像属性编辑的高保真 GAN 反演) paper:https://arxiv.org/abs/2109.06590 code:https://github.com/Tengfei-Wang/HFGI project:https://tengfei-wang.github.io/HFGI/ [2] Style Transformer for Image Inversion and Editing(用于图像反转和编辑的样式transformer) paper:https://arxiv.org/abs/2203.07932 code:https://github.com/sapphire497/style-transformer[3] MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting(用于高保真图像修复的多级交互式 Siamese 过滤) paper:https://arxiv.org/abs/2203.06304 code:https://github.com/tsingqguo/misf图像翻译[1] QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation(图像翻译中对比学习的查询选择注意) paper:https://arxiv.org/abs/2203.08483 code:https://github.com/sapphire497/query-selected-attention超分辨率[1] A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution(一种用于空间变形鲁棒场景文本图像超分辨率的文本注意网络) paper:https://arxiv.org/abs/2203.09388 code:https://github.com/mjq11302010044/TATT[2] Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution(一种真实图像超分辨率的局部判别学习方法) paper:https://arxiv.org/abs/2203.09195 code:https://github.com/csjliang/LDL[3] Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel(对噪声和核进行精细退化建模的盲图像超分辨率) paper:https://arxiv.org/abs/2107.00986 code:https://github.com/zsyOAOA/BSRDM去噪/去模糊/去雨去雾[1] Neural Compression-Based Feature Learning for Video Restoration(用于视频复原的基于神经压缩的特征学习)(视频处理) paper:https://arxiv.org/abs/2203.09208[2] Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots(具有可见盲点的自监督图像去噪) paper:https://arxiv.org/abs/2203.06967 code:https://github.com/demonsjin/Blind2Unblind风格迁移[1] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization(任意风格迁移和域泛化的精确特征分布匹配) paper:https://arxiv.org/abs/2203.07740 code:https://github.com/YBZh/EFDM05 三维视觉三维重建[1] AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation(用于 3D 完成、重建和生成的形状先验) paper:https://arxiv.org/abs/2203.09516 project:https://yccyenchicheng.github.io/AutoSDF/[2] Interacting Attention Graph for Single Image Two-Hand Reconstruction(单幅图像双手重建的交互注意力图) paper:https://arxiv.org/abs/2203.09364 code:https://github.com/Dw1010/IntagHand[3] OcclusionFusion: Occlusion-aware Motion Estimation for Real-time Dynamic 3D Reconstruction(实时动态 3D 重建的遮挡感知运动估计) paper:https://arxiv.org/abs/2203.07977 project:https://wenbin-lin.github.io/OcclusionFusion[4] Neural RGB-D Surface Reconstruction(神经 RGB-D 表面重建) paper:https://arxiv.org/abs/2104.04532 project:https://dazinovic.github.io/neural-rgbd-surface-reconstruction/ video:https://youtu.be/iWuSowPsC3g场景重建/视图合成[1] StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions(室内 3D 场景重建的风格转换) paper:https://arxiv.org/abs/2112.01530 code:https://github.com/lukasHoel/stylemesh project:https://lukashoel.github.io/stylemesh/[2] Look Outside the Room: Synthesizing A Consistent Long-Term 3D Scene Video from A Single Image(从单个图像合成一致的长期 3D 场景视频) paper:https://arxiv.org/abs/2203.09457 code:https://github.com/xrenaa/Look-Outside-Room project:https://xrenaa.github.io/look-outside-room/点云[1] AutoGPart: Intermediate Supervision Search for Generalizable 3D Part Segmentation(通用 3D 零件分割的中间监督搜索) paper:https://arxiv.org/abs/2203.06558[2] Geometric Transformer for Fast and Robust Point Cloud Registration(用于快速和稳健点云配准的几何transformer) paper:https://arxiv.org/abs/2202.06688 code:https://github.com/qinzheng93/GeoTransformer06 神经网络架构设计CNN[1] On the Integration of Self-Attention and Convolution(自注意力和卷积的整合) paper:https://arxiv.org/abs/2111.14556 code1:https://github.com/LeapLabTHU/ACmix code2:https://gitee.com/mindspore/models[2] Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs(将内核扩展到 31x31:重新审视 CNN 中的大型内核设计) paper:https://arxiv.org/abs/2203.06717 code:https://github.com/megvii-research/RepLKNet)Transformer[1] Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-shot Learning paper:https://arxiv.org/abs/2203.09064 code:https://github.com/StomachCold/HCTransformers[2] NomMer: Nominate Synergistic Context in Vision Transformer for Visual Recognition(在视觉transformer中为视觉识别指定协同上下文) paper:https://arxiv.org/abs/2111.12994 code:https://github.com/TencentYoutuResearch/VisualRecognition-NomMerMLP[1] Dynamic MLP for Fine-Grained Image Classification by Leveraging Geographical and Temporal Information(利用地理和时间信息进行细粒度图像分类的动态 MLP) paper:https://arxiv.org/abs/2203.03253 code:https://github.com/ylingfeng/DynamicMLP.git[2] Revisiting the Transferability of Supervised Pretraining: an MLP Perspective(重新审视监督预训练的可迁移性:MLP 视角) paper:https://arxiv.org/abs/2112.00496神经网络架构搜索[1] Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning(MAML 的全局收敛和受理论启发的神经架构搜索以进行 Few-Shot 学习) paper:https://arxiv.org/abs/2203.09137 code:https://github.com/YiteWang/MetaNTK-NAS07 人体解析/人体姿态估计[1] Capturing Humans in Motion: Temporal-Attentive 3D Human Pose and Shape Estimation from Monocular Video(捕捉运动中的人类:来自单目视频的时间注意 3D 人体姿势和形状估计) paper:https://arxiv.org/abs/2203.08534 video:https://mps-net.github.io/MPS-Net/[2] Physical Inertial Poser (PIP): Physics-aware Real-time Human Motion Tracking from Sparse Inertial Sensors(来自稀疏惯性传感器的物理感知实时人体运动跟踪) paper:https://arxiv.org/abs/2203.08528 project:https://xinyu-yi.github.io/PIP/[3] Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation(用于多人 3D 姿势估计的分布感知单阶段模型) paper:https://arxiv.org/abs/2203.07697[4] MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation(用于 3D 人体姿势估计的多假设transformer) paper:https://arxiv.org/abs/2111.12707 code:https://github.com/Vegetebird/MHFormer[5] CDGNet: Class Distribution Guided Network for Human Parsing(用于人体解析的类分布引导网络) paper:https://arxiv.org/abs/2111.1417308 动作识别/检测[1] Spatio-temporal Relation Modeling for Few-shot Action Recognition(小样本动作识别的时空关系建模) paper:https://arxiv.org/abs/2112.05132 code:https://github.com/Anirudh257/strm[2] RCL: Recurrent Continuous Localization for Temporal Action Detection(用于时间动作检测的循环连续定位) paper:https://arxiv.org/abs/2203.0711209 视觉定位/位姿估计[1] ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation(用于 6DoF 对象姿态估计的粗到细表面编码) paper:https://arxiv.org/abs/2203.09418[2] Object Localization under Single Coarse Point Supervision(单粗点监督下的目标定位) paper:https://arxiv.org/abs/2203.09338 code:https://github.com/ucas-vg/PointTinyBenchmark/[3] CrossLoc: Scalable Aerial Localization Assisted by Multimodal Synthetic Data(多模式合成数据辅助的可扩展空中定位) paper:https://arxiv.org/abs/2112.09081 code:https://github.com/TOPO-EPFL/CrossLoc10 光流/运动估计[1] GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting(通过几何引导的逐点投票进行类别级对象位姿估计) paper:https://arxiv.org/abs/2203.07918 code:https://github.com/lolrudy/GPV_Pose11 医学影像[1] Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks(使用几何深度神经网络从 3D MRI 扫描中快速显式重建皮质表面) paper:https://arxiv.org/abs/2203.09446 code:https://github.com/ai-med/Vox2Cortex[2] Generalizable Cross-modality Medical Image Segmentation via Style Augmentation and Dual Normalization(通过风格增强和双重归一化的可泛化跨模态医学图像分割) paper:https://arxiv.org/abs/2112.11177 code:https://github.com/zzzqzhou/Dual-Normalization12 文本理解[1] XYLayoutLM: Towards Layout-Aware Multimodal Networks For Visually-Rich Document Understanding(迈向布局感知多模式网络,以实现视觉丰富的文档理解) paper:https://arxiv.org/abs/2203.0694713 GAN/生成式/对抗式[1] Improving the Transferability of Targeted Adversarial Examples through Object-Based Diverse Input(通过基于对象的多样化输入提高目标对抗样本的可迁移性) paper:https://arxiv.org/abs/2203.09123 code:https://github.com/dreamflake/ODI[2] Towards Practical Certifiable Patch Defense with Vision Transformer(使用 Vision Transformer 实现实用的可认证补丁防御) paper:https://arxiv.org/abs/2203.08519) [3] Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment(基于松弛空间结构对齐的小样本生成模型自适应) paper:https://arxiv.org/abs/2203.04121[4] Enhancing Adversarial Training with Second-Order Statistics of Weights(使用权重的二阶统计加强对抗训练) paper:https://arxiv.org/abs/2203.06020 code:https://github.com/Alexkael/S2O14 视频检索[1] Bridging Video-text Retrieval with Multiple Choice Questions(桥接视频文本检索与多项选择题) paper:https://arxiv.org/abs/2201.04850 code:https://github.com/TencentARC/MCQ15 图像&视频生成/合成[1] Modulated Contrast for Versatile Image Synthesis(用于多功能图像合成的调制对比度) paper:https://arxiv.org/abs/2203.09333 code:https://github.com/fnzhan/MoNCE[2] Attribute Group Editing for Reliable Few-shot Image Generation(属性组编辑用于可靠的小样本图像生成) paper:https://arxiv.org/abs/2203.08422 code:https://github.com/UniBester/AGE[3] Text to Image Generation with Semantic-Spatial Aware GAN(使用语义空间感知 GAN 生成文本到图像) paper:https://arxiv.org/abs/2104.00567 code:https://github.com/wtliao/text2image[4] Playable Environments: Video Manipulation in Space and Time(可播放环境:空间和时间的视频操作) paper:https://arxiv.org/abs/2203.01914 code:https://willi-menapace.github.io/playable-environments-website[5] Depth-Aware Generative Adversarial Network for Talking Head Video Generation(用于说话头视频生成的深度感知生成对抗网络) paper:https://arxiv.org/abs/2203.06605 code:https://github.com/harlanhong/CVPR2022-DaGAN[2] FLAG: Flow-based 3D Avatar Generation from Sparse Observations(从稀疏观察中生成基于流的 3D 头像) paper:https://arxiv.org/abs/2203.05789 project:https://microsoft.github.io/flag16 视觉推理/视觉问答[1] MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-based Visual Question Answering(基于知识的视觉问答的多模态知识提取与积累) paper:https://arxiv.org/abs/2203.09138 code:https://github.com/AndersonStra/MuKEA[2] REX: Reasoning-aware and Grounded Explanation(推理意识和扎根的解释) paper:https://arxiv.org/abs/2203.06107 code:https://github.com/szzexpoi/rex17 视觉预测[5] On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles(自动驾驶汽车轨迹预测的对抗鲁棒性) paper:https://arxiv.org/abs/2201.05057 code:https://github.com/zqzqz/AdvTrajectoryPrediction18 图像计数[1] Represent, Compare, and Learn: A Similarity-Aware Framework for Class-Agnostic Counting(表示、比较和学习:用于类不可知计数的相似性感知框架) paper:https://arxiv.org/abs/2203.08354 code:https://github.com/flyinglynx/Bilinear-Matching-Network19 机器人[1] Coarse-to-Fine Q-attention: Efficient Learning for Visual Robotic Manipulation via Discretisation(通过离散化实现视觉机器人操作的高效学习) paper:https://arxiv.org/abs/2106.12534 code:https://github.com/stepjam/ARM project:https://sites.google.com/view/c2f-q-attention20 多模态学习[1] MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound(通过视觉、语言和声音的神经脚本知识) paper:https://arxiv.org/abs/2201.02639 project:https://rowanzellers.com/merlotreserve视觉-语言[1] Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding(为视觉基础生成伪语言查询) paper:https://arxiv.org/abs/2203.08481 code:https://github.com/LeapLabTHU/Pseudo-Q21 自监督/半监督/无监督学习[1] SimMatch: Semi-supervised Learning with Similarity Matching(具有相似性匹配的半监督学习) paper:https://arxiv.org/abs/2203.06915 code:https://github.com/KyleZheng1997/simmatch[2] Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements(一个完全无监督的框架,用于从噪声和部分测量中学习图像) paper:https://arxiv.org/abs/2111.12855 code:https://github.com/edongdongchen/REI[3] UniVIP: A Unified Framework for Self-Supervised Visual Pre-training(自监督视觉预训练的统一框架) paper:https://arxiv.org/abs/2203.0696522 联邦学习[1] Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning(通过非 IID 联邦学习的无数据知识蒸馏微调全局模型) paper:https://arxiv.org/abs/2203.0924923 度量学习[1] Non-isotropy Regularization for Proxy-based Deep Metric Learning(基于代理的深度度量学习的非各向同性正则化) paper:https://arxiv.org/abs/2203.08547 code:https://github.com/ExplainableML/NonIsotropicProxyDML[2] Integrating Language Guidance into Vision-based Deep Metric Learning(将语言指导集成到基于视觉的深度度量学习中) paper:https://arxiv.org/abs/2203.08543 code:https://github.com/ExplainableML/LanguageGuidance_for_DML25 增量学习[1] Forward Compatible Few-Shot Class-Incremental Learning(前后兼容的小样本类增量学习) paper:https://arxiv.org/abs/2203.06953 code:https://github.com/zhoudw-zdw/CVPR22-Fact[2] Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning(非示例类增量学习的自我维持表示扩展) paper:https://arxiv.org/abs/2203.0635926 迁移学习/domain/自适应[1] Category Contrast for Unsupervised Domain Adaptation in Visual Tasks(视觉任务中无监督域适应的类别对比) paper:https://arxiv.org/abs/2106.02885[2] Learning Distinctive Margin toward Active Domain Adaptation(向主动领域适应学习独特的边际) paper:https://arxiv.org/abs/2203.05738 code:https://github.com/TencentYoutuResearch/ActiveLearning-SDM27 对比学习[1] Rethinking Minimal Sufficient Representation in Contrastive Learning(重新思考对比学习中的最小充分表示) paper:https://arxiv.org/abs/2203.07004 code:https://github.com/Haoqing-Wang/InfoCL28 主动学习[1] Active Learning by Feature Mixing(通过特征混合进行主动学习) paper:https://arxiv.org/abs/2203.07034 code:https://github.com/Haoqing-Wang/InfoCL29 数据处理图像压缩[1] The Devil Is in the Details: Window-based Attention for Image Compression(细节中的魔鬼:图像压缩的基于窗口的注意力) paper:https://arxiv.org/abs/2203.08450 code:https://github.com/Googolxx/STF图像聚类[1] RAMA: A Rapid Multicut Algorithm on GPU(GPU 上的快速多切算法) paper:https://arxiv.org/abs/2109.01838 code:https://github.com/pawelswoboda/RAMA30 视觉表征学习[1] Exploring Set Similarity for Dense Self-supervised Representation Learning(探索密集自监督表示学习的集合相似性) paper:https://arxiv.org/abs/2107.08712[2] Motion-aware Contrastive Video Representation Learning via Foreground-background Merging(通过前景-背景合并的运动感知对比视频表示学习) paper:https://arxiv.org/abs/2109.15130 code:https://github.com/Mark12Ding/FAME31 模型训练/泛化[1] Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective(神经网络可以两次学习相同的模型吗?从决策边界的角度研究可重复性和双重下降) paper:https://arxiv.org/abs/2203.08124 code:https://github.com/somepago/dbViz噪声标签[1] Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels paper:https://arxiv.org/abs/2203.07788 code:https://github.com/Yikai-Wang/SPR-LNL32233模型压缩知识蒸馏[1] Decoupled Knowledge Distillation(解耦知识蒸馏) paper:https://arxiv.org/abs/2203.08679 code:https://github.com/megvii-research/mdistiller[2] Wavelet Knowledge Distillation: Towards Efficient Image-to-Image Translation(小波知识蒸馏:迈向高效的图像到图像转换) paper:https://arxiv.org/abs/2203.06321剪枝[1] Interspace Pruning: Using Adaptive Filter Representations to Improve Training of Sparse CNNs(空间剪枝:使用自适应滤波器表示来改进稀疏 CNN 的训练) paper:https://arxiv.org/abs/2203.07808量化[1] Implicit Feature Decoupling with Depthwise Quantization(使用深度量化的隐式特征解耦) paper:https://arxiv.org/abs/2203.0808033 数据集[1] FERV39k: A Large-Scale Multi-Scene Dataset for Facial Expression Recognition in Videos(用于视频中面部表情识别的大规模多场景数据集) paper:https://arxiv.org/abs/2203.09463[2] Ego4D: Around the World in 3,000 Hours of Egocentric Video(3000 小时以自我为中心的视频环游世界) paper:https://arxiv.org/abs/2110.07058 project:https://ego4d-data.org/34 其他[1] FastDOG: Fast Discrete Optimization on GPU(GPU 上的快速离散优化) paper:https://arxiv.org/abs/2111.10270 code:https://github.com/LPMP/BDD[2] AirObject: A Temporally Evolving Graph Embedding for Object Identification(用于对象识别的时间演化图嵌入)(object encoding) paper:https://arxiv.org/abs/2111.15150 code:https://github.com/Nik-V9/AirObject DLer-CVPR2022论文分享交流群已成立! 大家好,这是CVPR2022论文分享群里,群里会第一时间发布CVPR2022的论文解读和交流分享会,主要设计方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。 进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明) ??长按识别,邀请您进群!

上一篇:2023-05-25_「转」疾驰的AIGC,需要的不是一堆电池,而是一辆电车 下一篇:2021-08-31_周五周末每天1小时,未成年人网游「防沉迷」靠刷脸、大数据验证身份?

TAG标签:

18
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价