全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-07-27_训练大模型也不怕,轻量级TorchShard库减少GPU内存消耗,API与PyTorch相同

您的位置:首页 >> 新闻 >> 行业资讯

训练大模型也不怕,轻量级TorchShard库减少GPU内存消耗,API与PyTorch相同 选自medium作者:Kaiyu Yue 机器之心编译 编辑:陈 训练大模型时,如何优雅地减少 GPU 内存消耗?你不妨试试这个 TorchShard 库,兼具模型并行与数据并行等特点,还具有与 PyTorch 相同的 API 设计。 模型并行性能够促进视觉任务的性能。但是目前,还没有一个标准库可以让我们像采用混合精度等其他 SOTA 技术那样轻松地采用模型并行性。 最近,马里兰大学帕克分校计算机科学系的研究者 Kaiyu Yue 开源了一个工具TorchShard,这是一个轻量级的引擎,用于将 PyTorch 张量切片成并行的 shard。当模型拥有大量的线性层(例如 BERT、GPT)或者很多类(数百万)时,TorchShard 可以减少 GPU 内存并扩展训练规模,它具有与 PyTorch 相同的 API 设计。 项目地址:https://github.com/KaiyuYue/torchshard BERT 和 GPT 等超大模型正在成为 NLP 领域应用中的趋势。然而训练这种大模型面临内存限制的问题,为了解决这个难题,研究者使用 Megatron-LM 和 PyTorch-Lightning 模型并行性扩大训练。其中,Megatron-LM 只专注于大规模训练语言模型,而 PyTorch-Lightning 仅基于 sharded 优化器状态和梯度,如 DeepSpeed。 在计算机视觉任务中,我们会在训练基于 Transformer、MLP 模型或在数百万个类中训练模型时遇到同样的问题。TorchShard 的目标是: 建立一个标准的 PyTorch 扩展库,用于使用模型并行性进行扩展训练; 以一种简单、自然的方式使用 PyTorch。 TorchShard 是对模型并行单元(mpu)的彻底重写,是 Megatron-LM 核心。最重要的是,TorchShard 具有与 PyTorch 相同的 API 设计,这意味着所有的子类和子函数都保持与 PyTorch 相同。例如,如果你想让原来的线性层 torch.nn. linear 是并行的,只需将 torch 变成 ts,并调用带有 dim 参数的子类 nn.ParallelLinear,如下所示: import torchshard as ts ts.init_process_group(group_size=2) # init parallel groups m = torch.nn.Sequential( torch.nn.Linear(20, 30, bias=True), ts.nn.ParallelLinear(30, 30, bias=True, dim=None), # equal to nn.Linear() ts.nn.ParallelLinear(30, 30, bias=True, dim=0), # parallel in row dimension ts.nn.ParallelLinear(30, 30, bias=True, dim=1), # parallel in column dimension).cuda() x = m(x) # forwardloss = ts.nn.functional.parallel_cross_entropy(x, y) # parallel loss functionloss.backward() # backward torch.save( ts.collect_state_dict(m, m.state_dict()), 'm.pt') # save model state 除此之外,TorchShard 还支持与 DDP 一起使用时的各种特性,保存和加载 shard checkpoints,初始化 shard 参数,以及跨多台机器和 GPU 处理张量。具体如下: torchshard 包含必要的功能和操作,如 torch 包; torchshard.nn 包含图形的基本构建块,如 torch.nn 包; torchshard.nn.functional 包含 torchshard.nn 的相应功能操作,如 torch.nn.functional 包; torchshard.distributed 包含处理分布式张量和组的基本功能,如 torch.distributed 包更容易使用。 如何开始 TorchShard? 安装要求:Python 版本 3.6 以上(含)以及 PyTorch 版本 1.9.0 以上(含)。通过 pip 安装 TorchShard 库: pip install torchshard 这里以 ImageNet 上训练 ResNet-50 为例,展示仅需几行代码就能在项目中使用 TorchShard。通常 ResNet-50 设计范式包含两部分:卷积块和全连接层,如下图 1 所示。一般来说,由于大量的类依赖于数据集,最后的线性层比卷积块有更多的参数。所以我们切片最后一个线性层来检查其最大尺寸。 图 1:DDP 以及 DDP + TorchShard 前向训练流。 在上图 1 中,左边展示了传统的 DDP 训练范式。假设我们有两个等级,DDP 将强制每个等级有重复的模型参数。然而,TorchShard 会将层级参数切片到不同的等级,从而减少整个 GPU 内存。现在向 ImageNet 官方训练脚本添加一些代码,修改后的版本已经成为 TorchShard 项目的一部分。 首先将 torchshard import 进来: import torchshard as ts 然后需要初始化模型并行的进程组,就像初始化 DDP 进程组的方法一样。只需要设置一个功能参数来告诉 torchshard 应该从目标层中切片出多少个 shard。 ts.distributed.init_process_group(group_size=args.world_size) 接下来将模型转换为并行版本,其中可以直接将整个模型输入到转换辅助函数中,无需特殊处理。 import resnetmodel = resnet.__dict__[args.arch](pretrained=args.pretrained)ts.nn.ParallelLinear.convert_parallel_linear( model, dim=args.model_parallel_dim)print("= paralleling model'{}'".format(args.arch)) 此外,不要忘记损失函数 torchshard.nn.ParallelCrossEntropy ,该损失函数可以根据输入张量在原始 PyTorch 版本和并行版本之间切换运行模式。例如,如果输入张量是由 torchshard 并行层产生的,torchshard.nn.ParallelCrossEntropy 将以并行方式计算损失值。 criterion = ts.nn.ParallelCrossEntropyLoss().cuda(args.gpu) 当模型并行模式(TorchShard)和数据并行模式(DDP)一起工作时,我们需要处理并行层的输入。每个等级中的参数和训练数据都不同。因此,我们在 ResNet forward 中的并行线性层之前收集输入张量。 x = ts.distributed.gather(x, dim=0) # gather input along the dim of batch size x = self.fc(x) 同样地,我们在计算损失值之前收集目标张量。 output = model(images)if args.enable_model_parallel: target = ts.distributed.gather(target, dim=0)loss=criterion(output,target) 最后,使用 TorchShard 函数保存和加载 checkpoints 非常简单。TorchShard 提供了名为 torchshard.collect_state_dict 基本函数用于保存 checkpoints,torchshard.relocate_state_dict 用于加载 checkpoints。 保存检查点: state_dict = model.state_dict()# collect states across all ranksstate_dict = ts.collect_state_dict(model, state_dict)if ts.distributed.get_rank() == 0: torch.save(state_dict, 'resnet50.pt') # save as before 加载检查点: if ts.distributed.get_rank() == 0: state_dict = torch.load('resnet50.pt')# relocate state_dict() for all ranksstate_dict = ts.relocate_state_dict(model, state_dict)model.load_state_dict(state_dict) # load as before 现在我们已经完成了在 ImageNet 上为 shard 训练添加代码, 然后可以通过增加类的数量来扩展它,即最后一个线性层的输出特征维度。训练脚本可以在 torchshard/project/imagenet 中找到。下图展示了在 8 个 NVIDIA TITAN-XP (12196 MiB) GPU 、类数 ≤ 1000000 上和 16 个 GPU 、类数为 2000000 上训练 ResNet-50 扩展能力。 图 2:在不同并行策略下使用标准 ResNet 训练设置(即输入大小 224 和批量大小 256)的 GPU 内存成本。 使用 AMP 与 ZeRO TorchShard 以简单自然的 PyTorch 方式与其他技术(例如自动混合精度 AMP 以及 ZeRO)一起混合使用。 # gradscalerscaler = torch.cuda.amp.GradScaler(enabled=args.enable_amp_mode) with torch.cuda.amp.autocast(enabled=args.enable_amp_mode): # compute output output = model(images) if args.enable_model_parallel: target = ts.distributed.gather(target, dim=0) loss = criterion(output, target) # compute gradient and do SGD stepscaler.scale(loss).backward()scaler.step(optimizer)scaler.update()optimizer.zero_grad() 图 3:在不同并行策略以及 AMP 下,使用标准的 ResNet 训练设置时(输入尺寸 224,batch 大小 256),使用 GPU 内存的成本。 ZeRO 是 DeepSpeed 的核心,与 PyTorch = 1.9.0 一起使用。如果你想测试一个函数,请安装最新版本的脚本来运行,代码如下: from torch.distributed.optim import ZeroRedundancyOptimizer if args.enable_zero_optim: print('= using ZeroRedundancyOptimizer') optimizer = torch.distributed.optim.ZeroRedundancyOptimizer( model.parameters(), optimizer_class=torch.optim.SGD, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)else: optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) 图 4:在不同的并行策略和 ZeRO 优化器下,在标准 ResNet 训练设置(输入大小 224 和批大小 256)的 GPU 内存成本。 此外,TorchShard 还提供了基本的 Python API 以及和相应的模板文件,以简化自定义并行层的实现。 研究者将持续开发 TorchShard,如 TorchShard 下一个特性是新的数据采样器 torchshard.utils.data.DistributedGroupSampler,它的命名遵循 torch.utils.data.DistributedSampler。该采样器旨在帮助用户构建 M-way 数据并行、N-way 模型并行,使得其就像 DDP 中的 DistributedSampler 一样简单。用户唯一要做的就是设置模型并行组号,然后 DistributedGroupSampler 来确保同一模型并行组中的模块具有相同的训练数据。 原文链接:https://medium.com/pytorch/torchshard-a31fcbfdc354 ACL 2021论文分享会 为了给国内 NLP 社区的从业人员搭建一个自由轻松的学术交流平台,机器之心计划于 7 月 31 日组织「ACL 2021 论文分享会」。 ACL 论文分享会设置 Keynote、 论文分享 、圆桌论坛、 Poster与企业展台环节 。Keynote 嘉宾包括字节跳动人工智能实验室总监李航和华为诺亚方舟实验室语音语义首席科学家刘群,创新工场首席科学家周明将作为圆桌论坛嘉宾参与此次活动。 欢迎论文作者、AI 社区从业者们点击「阅读原文」报名参与。 ?THE END 转载请联系本公众号获得授权 投稿或寻求报道:content@jiqizhixin.com 阅读原文

上一篇:2021-09-23_谁说日本只有魔性广告? 下一篇:2021-02-22_「转」上汽集团大举进军芯片产业, 借道地平线打通上下游

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价