全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-06-13_用Python从零开始构建ResNet

您的位置:首页 >> 新闻 >> 行业资讯

用Python从零开始构建ResNet 作者 | SHAKHADRI313译者 | 王强策划 | 刘燕近年来,深度学习和计算机视觉领域取得了一系列突破。特别是行业引入了非常深的卷积神经网络后,在这些模型的帮助下,图像识别和图像分类等问题取得了非常好的成果。 因此这些年来,深度学习架构变得越来越深(层越来越多)以解决越来越复杂的任务,这也有助于提高分类和识别任务的性能,并让它们表现稳健。 但当我们继续向神经网络添加更多层时,模型训练起来也越来越困难,模型的准确度开始饱和,然后还会下降。于是 ResNet 诞生了,让我们摆脱了这种窘境,并能帮助解决这个问题。 什么是 ResNet?残差网络(ResNet)是著名的深度学习模型之一,由任少清、何开明、孙健和张翔宇在他们的论文中引入。这篇 2015 年的论文全名叫“Deep Residual Learning for Image Recognition”[1]。ResNet 模型是迄今为止广泛流行和最成功的深度学习模型之一。 残差块随着这些残差(Residual)块的引入,训练非常深的网络时面临的问题得到了缓解,ResNet 模型由这些块组成。 来源:“图像识别的深度残差学习”论文 随着这些残差块的引入,训练非常深的网络时面临的问题得到了缓解,ResNet 模型由这些块组成。 在上图中,我们可以注意到的第一件事是跳过模型的某些层的直接连接。这种连接称为“跳过连接”,是残差块的核心。由于存在这种跳过连接,输出是不相同的。如果没有跳过连接,输入‘X 将乘以层的权重,然后添加一个偏置项。 然后是激活函数 f(),我们得到输出为 H(x)。 H(x)=f(wx+b) 或 H(x)=f(x) 现在引入了新的跳过连接技术,输出 H(x) 更改为 H(x)=f(x)+x 但是输入的维度可能与输出的维度不同,这可能发生在卷积层或池化层中。因此,这个问题可以用这两种方法来处理: 用跳过连接填充零以增加其维度。 1×1 卷积层被添加到输入以匹配维度。在这种情况下,输出为: H(x)=f(x)+w1.x 这里添加了一个额外的参数 w1,而在使用第一种方法时没有添加额外的参数。 ResNet 中的这些跳过连接技术通过梯度流经的替代快捷路径来解决深度 CNN 中梯度消失的问题。此外,如果有任何层损害了架构的性能,跳过连接也能起作用,它将被正则化跳过。 ResNet 的架构架构中有一个 34 层的普通网络,其灵感来自 VGG-19,其中添加了快捷连接或跳过连接。这些跳过连接或残差块将架构转换为残差网络,如下图所示。 来源:“图像识别的深度残差学习”论文 将 ResNet 与 Keras 结合使用:Keras 是一个开源深度学习库,能够在 TensorFlow 上运行。Keras Applications 提供以下 ResNet 版本。 ResNet50 ResNet50V2 ResNet101 ResNet101V2 ResNet152 ResNet152V2 让我们从零开始构建 ResNet: 来源:“图像识别的深度残差学习”论文 我们将上图作为参考,开始构建网络。 ResNet 架构多次使用 CNN 块,因此我们为 CNN 块创建一个类,它接受输入通道和输出通道。每个 conv 层之后都有一个 batchnorm2d。 import torch import torch.nn as nn class block(nn.Module): def __init__( self, in_channels, intermediate_channels, identity_downsample=None, stride=1 ): super(block, self).__init__() self.expansion = 4 self.conv1 = nn.Conv2d( in_channels, intermediate_channels, kernel_size=1, stride=1, padding=0, bias=False ) self.bn1 = nn.BatchNorm2d(intermediate_channels) self.conv2 = nn.Conv2d( intermediate_channels, intermediate_channels, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(intermediate_channels) self.conv3 = nn.Conv2d( intermediate_channels, intermediate_channels * self.expansion, kernel_size=1, stride=1, padding=0, bias=False ) self.bn3 = nn.BatchNorm2d(intermediate_channels * self.expansion) self.relu = nn.ReLU() self.identity_downsample = identity_downsample self.stride = stride def forward(self, x): identity = x.clone() x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) if self.identity_downsample is not None: identity = self.identity_downsample(identity) x += identity x = self.relu(x) return x 然后创建一个 ResNet 类,它接受许多块、层、图像通道和类数的输入。在下面的代码中,函数‘_make_layer’ 创建 ResNet 层,它接受块的输入、残差块数、输出通道和步幅。 class ResNet(nn.Module): def __init__(self, block, layers, image_channels, num_classes): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Essentially the entire ResNet architecture are in these 4 lines below self.layer1 = self._make_layer( block, layers[0], intermediate_channels=64, stride=1 ) self.layer2 = self._make_layer( block, layers[1], intermediate_channels=128, stride=2 ) self.layer3 = self._make_layer( block, layers[2], intermediate_channels=256, stride=2 ) self.layer4 = self._make_layer( block, layers[3], intermediate_channels=512, stride=2 ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * 4, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.shape[0], -1) x = self.fc(x) return x def _make_layer(self, block, num_residual_blocks, intermediate_channels, stride): identity_downsample = None layers = [] # Either if we half the input space for ex, 56x56 - 28x28 (stride=2), or channels changes # we need to adapt the Identity (skip connection) so it will be able to be added # to the layer that's ahead if stride != 1 or self.in_channels != intermediate_channels * 4: identity_downsample = nn.Sequential( nn.Conv2d( self.in_channels, intermediate_channels * 4, kernel_size=1, stride=stride, bias=False ), nn.BatchNorm2d(intermediate_channels * 4), ) layers.append( block(self.in_channels, intermediate_channels, identity_downsample, stride) ) # The expansion size is always 4 for ResNet 50,101,152 self.in_channels = intermediate_channels * 4 # For example for first resnet layer: 256 will be mapped to 64 as intermediate layer, # then finally back to 256. Hence no identity downsample is needed, since stride = 1, # and also same amount of channels. for i in range(num_residual_blocks - 1): layers.append(block(self.in_channels, intermediate_channels)) 返回 nn.Sequential(*layers) 然后定义不同版本的 ResNet 对于 ResNet50,层序列为 [3,4,6,3]。 对于 ResNet101,层序列为 [3,4,23,3]。 对于 ResNet152,层序列为 [3,8,36,3]。(请参阅“图像识别的深度残差学习”论文) def ResNet50(img_channel=3, num_classes=1000): return ResNet(block, [3, 4, 6, 3], img_channel, num_classes) def ResNet101(img_channel=3, num_classes=1000): return ResNet(block, [3, 4, 23, 3], img_channel, num_classes) def ResNet152(img_channel=3, num_classes=1000): return ResNet(block, [3, 8, 36, 3], img_channel, num_classes) 然后编写一个小的测试来检查模型是否工作正常。 def test(): net = ResNet101(img_channel=3, num_classes=1000) device = "cuda" if torch.cuda.is_available() else "cpu" y = net(torch.randn(4, 3, 224, 224)).to(device) print(y.size()) test() 对于上面的测试用例,输出应该是: 全部代码可以在这里访问: https://github.com/BakingBrains/Deep_Learning_models_implementation_from-scratch_using_pytorch_/blob/main/ResNet_.py [1]:Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition, Dec 2015, DOI:https://arxiv.org/abs/1512.03385 原文链接: https://www.analyticsvidhya.com/blog/2021/06/build-resnet-from-scratch-with-python/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29&fileGuid=45ZbZ1uTOtQ8SANF) 你也「在看」吗??? 阅读原文

上一篇:2022-08-25_预训练模型的AI系统实战:IDEA研究院CCNL陈崇沛谈AI系统架构 下一篇:2019-06-06_Kafka学习路径图:从入门、原理到实战 | 极客时间

TAG标签:

16
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价