全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-03-27_「转」【实战干货】用Pytorch轻松实现28个视觉Transformer(附代码解读)

您的位置:首页 >> 新闻 >> 行业资讯

【实战干货】用Pytorch轻松实现28个视觉Transformer(附代码解读) 点击上方,选择星标或置顶,不定期资源大放送! 阅读大概需要15分钟 Follow小博主,每天更新前沿干货 作者丨科技猛兽转自丨极市平台【导读】本文将介绍一个优秀的PyTorch开源库——timm库,并对其中的vision transformer.py代码进行了详细解读。万字长文,建议先点击收藏! Transformer 架构早已在自然语言处理任务中得到广泛应用,但在计算机视觉领域中仍然受到限制。在计算机视觉领域,目前已有大量工作表明模型对 CNN 的依赖不是必需的,当直接应用于图像块序列时,Transformer 也能很好地执行图像分类任务。 本文将简要介绍了优秀的 PyTorch Image Model 库:timm库。与此同时,将会为大家详细介绍其中的视觉Transformer代码以及一个优秀的视觉Transformer 的PyTorch实现,以帮助大家更快地开展相关实验。 什么是timm库?PyTorchImageModels,简称timm,是一个巨大的PyTorch代码集合,包括了一系列: image modelslayersutilitiesoptimizersschedulersdata-loaders / augmentationstraining / validation scripts旨在将各种SOTA模型整合在一起,并具有复现ImageNet训练结果的能力。 timm库作者是来自加拿大温哥华的Ross Wightman。 作者github链接: https://github.com/rwightman timm库链接: https://github.com/rwightman/pytorch-image-models 所有的PyTorch模型及其对应arxiv链接如下: Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877 DenseNet - https://arxiv.org/abs/1608.06993 DLA - https://arxiv.org/abs/1707.06484 DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 EfficientNet (MBConvNet Family) EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html FBNet-C - https://arxiv.org/abs/1812.03443 MixNet - https://arxiv.org/abs/1907.09595 MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 MobileNet-V2 - https://arxiv.org/abs/1801.04381 Single-Path NAS - https://arxiv.org/abs/1904.02877 GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 HRNet - https://arxiv.org/abs/1908.07919 Inception-V3 - https://arxiv.org/abs/1512.00567 Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 NASNet-A - https://arxiv.org/abs/1707.07012 NFNet-F - https://arxiv.org/abs/2102.06171 NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 PNasNet - https://arxiv.org/abs/1712.00559 RegNet - https://arxiv.org/abs/2003.13678 RepVGG - https://arxiv.org/abs/2101.03697 ResNet/ResNeXt ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 ResNeXt - https://arxiv.org/abs/1611.05431 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 Res2Net - https://arxiv.org/abs/1904.01169 ResNeSt - https://arxiv.org/abs/2004.08955 ReXNet - https://arxiv.org/abs/2007.00992 SelecSLS - https://arxiv.org/abs/1907.00837 Selective Kernel Networks - https://arxiv.org/abs/1903.06586 TResNet - https://arxiv.org/abs/2003.13630 Vision Transformer - https://arxiv.org/abs/2010.11929 VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 Xception - https://arxiv.org/abs/1610.02357 Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 timm库特点所有的模型都有默认的API: accessing/changing the classifier -get_classifierandreset_classifier只对features做前向传播 -forward_features所有模型都支持多尺度特征提取 (feature pyramids) (通过create_model函数): create_model(name, features_only=True, out_indices=..., output_stride=...)out_indices指定返回哪个feature maps to return, 从0开始,out_indices[i]对应着C(i + 1)feature level。 output_stride通过dilated convolutions控制网络的output stride。大多数网络默认 stride 32 。 所有的模型都有一致的pretrained weight loader,adapts last linear if necessary。 训练方式支持: NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)PyTorch w/ single GPU single process (AMP optional)动态的全局池化方式可以选择:average pooling, max pooling, average + max, or concat([average, max]),默认是adaptive average。 Schedulers: Schedulers 包括step,cosinew/ restarts,tanhw/ restarts,plateau。 Optimizer: rmsprop_tfadapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour.radamby Liyuan Liu (https://arxiv.org/abs/1908.03265)novogradby Masashi Kimura (https://arxiv.org/abs/1905.11286)lookaheadadapted from impl by Liam (https://arxiv.org/abs/1907.08610)fusednameoptimizers by name with NVIDIA Apex installedadampandsgdpby Naver ClovAI (https://arxiv.org/abs/2006.08217)adafactoradapted from FAIRSeq impl (https://arxiv.org/abs/1804.04235)adahessianby David Samuel (https://arxiv.org/abs/2006.00719)timm库 vision_transformer.py代码解读代码来自: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py 对应的论文是ViT,是除了官方开源的代码之外的又一个优秀的PyTorch implement。 An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929 另一篇工作DeiT也大量借鉴了timm库这份代码的实现: Training data-efficient image transformers & distillation through attention Training data-efficient image transformers & distillation through attention https://arxiv.org/abs/2012.12877 vision_transformer.py: 代码中定义的变量的含义如下: img_size:tuple类型,里面是int类型,代表输入的图片大小,默认是224。 patch_size:tuple类型,里面是int类型,代表Patch的大小,默认是16。 in_chans:int类型,代表输入图片的channel数,默认是3。 num_classes:int类型classification head的分类数,比如CIFAR100就是100,默认是1000。 embed_dim:int类型Transformer的embedding dimension,默认是768。 depth:int类型,Transformer的Block的数量,默认是12。 num_heads:int类型,attention heads的数量,默认是12。 mlp_ratio:int类型,mlp hidden dim/embedding dim的值,默认是4。 qkv_bias:bool类型,attention模块计算qkv时需要bias吗,默认是True。 qk_scale:一般设置成None就行。 drop_rate:float类型,dropout rate,默认是0。 attn_drop_rate:float类型,attention模块的dropout rate,默认是0。 drop_path_rate:float类型,默认是0。 hybrid_backbone:nn.Module类型,在把图片转换成Patch之前,需要先通过一个Backbone吗?默认是None。 如果是None,就直接把图片转化成Patch。 如果不是None,就先通过这个Backbone,再转化成Patch。 norm_layer:nn.Module类型,归一化层类型,默认是None。 1. 导入必要的库和模型: import mathimport loggingfrom functools import partialfrom collections import OrderedDict import torchimport torch.nn as nnimport torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STDfrom .helpers import load_pretrainedfrom .layers import StdConv2dSame, DropPath, to_2tuple, trunc_normal_from .resnet import resnet26d, resnet50dfrom .resnetv2 import ResNetV2from.registryimportregister_model2. 定义一个字典,代表标准的模型,如果需要更改模型超参数只需要改变_cfg的传入的参数即可。 def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs }3. default_cfgs代表支持的所有模型,也定义成字典的形式: vit_small_patch16_224里面的small代表小模型。 ViT的第一步要把图片分成一个个patch,然后把这些patch组合在一起作为对图像的序列化操作,比如一张224 × 224的图片分成大小为16 × 16的patch,那一共可以分成196个。所以这个图片就序列化成了(196, 256)的tensor。所以这里的: 16:就代表patch的大小。 224:就代表输入图片的大小。 按照这个命名方式,支持的模型有:vit_base_patch16_224,vit_base_patch16_384等等。 后面的vit_deit_base_patch16_224等等模型代表DeiT这篇论文的模型。 default_cfgs = { # patch models (my experiments) 'vit_small_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', ), # patch models (weights ported from official Google JAX impl) 'vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), 'vit_base_patch32_224': _cfg( url='', # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_base_patch16_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_base_patch32_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_large_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch32_224': _cfg( url='', # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch16_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_large_patch32_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), # patch models, imagenet21k (weights ported from official Google JAX impl) 'vit_base_patch16_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_base_patch32_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch16_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch32_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_huge_patch14_224_in21k': _cfg( url='', # FIXME I have weights for this but 2GB limit for github release binaries num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), # hybrid models (weights ported from official Google JAX impl) 'vit_base_resnet50_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'), 'vit_base_resnet50_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'), # hybrid models (my experiments) 'vit_small_resnet26d_224': _cfg(), 'vit_small_resnet50d_s3_224': _cfg(), 'vit_base_resnet26d_224': _cfg(), 'vit_base_resnet50d_224': _cfg(), # deit models (FB weights) 'vit_deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'vit_deit_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'vit_deit_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',), 'vit_deit_base_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', input_size=(3, 384, 384), crop_pct=1.0), 'vit_deit_tiny_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth'), 'vit_deit_small_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth'), 'vit_deit_base_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', ), 'vit_deit_base_distilled_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', input_size=(3, 384, 384), crop_pct=1.0),}4. FFN实现: class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x)returnx5. Attention实现: 在python 3.5以后,@是一个操作符,表示矩阵-向量乘法 A@x 就是矩阵-向量乘法A*x: np.dot(A, x)。 class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) # x: (B, N, C) return x6. 包含Attention和Add & Norm的Block实现: 图1:Block类对应结构 不同之处是: 先进行Norm,再Attention;先进行Norm,再通过FFN (MLP)。 class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x7. 接下来要把图片转换成Patch,一种做法是直接把Image转化成Patch,另一种做法是把Backbone输出的特征转化成Patch。 1) 直接把Image转化成Patch: 输入的x的维度是:(B, C, H, W) 输出的PatchEmbedding的维度是:(B, 14*14, 768),768表示embed_dim,14*14表示一共有196个Patches。 class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # x: (B, 14*14, 768)returnx2) 把Backbone输出的特征转化成Patch: 输入的x的维度是:(B, C, H, W) 得到Backbone输出的维度是:(B, feature_size, feature_size, feature_dim) 输出的PatchEmbedding的维度是:(B, feature_size, feature_size, embed_dim),一共有feature_size * feature_size个Patches。 class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1])) if isinstance(o, (list, tuple)): o = o[-1] # last feature if backbone outputs list/tuple of features feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) if hasattr(self.backbone, 'feature_info'): feature_dim = self.backbone.feature_info.channels()[-1] else: feature_dim = self.backbone.num_features self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Conv2d(feature_dim, embed_dim, 1) def forward(self, x): x = self.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x).flatten(2).transpose(1, 2) return x8. 以上是ViT所需的所有模块的定义,下面是VisionTransformer 这个类的实现: 8.1 使用这个类时需要传入的变量,其含义已经在本小节一开始介绍。 class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,drop_rate=0.,attn_drop_rate=0.,drop_path_rate=0.,hybrid_backbone=None,norm_layer=None):8.2 得到分块后的Patch的数量: super().__init__()self.num_classes = num_classesself.num_features = self.embed_dim = embed_dim # num_features for consistency with other modelsnorm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)num_patches=self.patch_embed.num_patches8.3 class token: 一开始定义成(1, 1, 768),之后再变成(B, 1, 768)。 self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) 8.4 定义位置编码: self.pos_embed=nn.Parameter(torch.zeros(1,num_patches+1,embed_dim))8.5 把12个Block连接起来: self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay ruleself.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)])self.norm = norm_layer(embed_dim)8.6 表示层和分类头: 表示层输出维度是representation_size,分类头输出维度是num_classes。 # Representation layerif representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ]))else: self.pre_logits = nn.Identity() # Classifier headself.head=nn.Linear(self.num_features,num_classes)ifnum_classes0elsenn.Identity()8.7 初始化各个模块: 函数trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.)的目的是用截断的正态分布绘制的值填充输入张量,我们只需要输入均值mean,标准差std,下界a,上界b即可。 self.apply(self._init_weights)表示对各个模块的权重进行初始化。apply函数的代码是: for module in self.children(): module.apply(fn) fn(self) return self 递归地将fn应用于每个子模块,相当于在递归调用fn,即_init_weights这个函数。 也就是把模型的所有子模块的nn.Linear和nn.LayerNorm层都初始化掉。 trunc_normal_(self.pos_embed, std=.02)trunc_normal_(self.cls_token, std=.02)self.apply(self._init_weights) def _init_weights(self, m):if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)8.8 最后就是整个ViT模型的forward实现: def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x)[:, 0] x = self.pre_logits(x) return x def forward(self, x): x = self.forward_features(x) x = self.head(x)returnx9. 下面是Training data-efficient image transformers & distillation through attention这篇论文的DeiT这个类的实现: 整体结构与ViT相似,继承了上面的VisionTransformer类。 class DistilledVisionTransformer(VisionTransformer):再额外定义以下3个变量: distillation token:dist_token新的位置编码:pos_embed蒸馏分类头:head_distDeiT相关介绍可以参考:Vision Transformer 超详细解读 (原理分析+代码解读) (三)。 self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))num_patches = self.patch_embed.num_patchesself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))self.head_dist=nn.Linear(self.embed_dim,self.num_classes)ifself.num_classes0elsenn.Identity()初始化新定义的变量: trunc_normal_(self.dist_token, std=.02)trunc_normal_(self.pos_embed, std=.02)self.head_dist.apply(self._init_weights)前向函数: def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0], x[:, 1] def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) if self.training: return x, x_dist else: # during inference, return the average of both classifier predictions return (x + x_dist) / 210. 对位置编码进行插值: posemb代表未插值的位置编码权值,posemb_tok为位置编码的token部分,posemb_grid为位置编码的插值部分。 首先把要插值部分posemb_grid给reshape成(1, gs_old, gs_old, -1)的形式,再插值成(1, gs_new, gs_new, -1)的形式,最后与token部分在第1维度拼接在一起,得到插值后的位置编码posemb。 def resize_pos_embed(posemb, posemb_new): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) ntok_new = posemb_new.shape[1] if True: posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:] ntok_new -= 1 else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) gs_new = int(math.sqrt(ntok_new)) _logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear') posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1)returnposemb11. _create_vision_transformer函数用于创建vision transformer: checkpoint_filter_fn的作用是加载预训练权重。 def checkpoint_filter_fn(state_dict, model): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k and len(v.shape) 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed(v, model.pos_embed) out_dict[k] = v return out_dict def _create_vision_transformer(variant, pretrained=False, distilled=False, **kwargs): default_cfg = default_cfgs[variant] default_num_classes = default_cfg['num_classes'] default_img_size = default_cfg['input_size'][-1] num_classes = kwargs.pop('num_classes', default_num_classes) img_size = kwargs.pop('img_size', default_img_size) repr_size = kwargs.pop('representation_size', None) if repr_size is not None and num_classes != default_num_classes: # Remove representation layer if fine-tuning. This may not always be the desired action, # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? _logger.warning("Removing representation layer for fine-tuning.") repr_size = None model_cls = DistilledVisionTransformer if distilled else VisionTransformer model = model_cls(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained( model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=partial(checkpoint_filter_fn, model=model)) return model12. 定义和注册vision transformer模型: @ 指装饰器。 @register_model代表注册器,注册这个新定义的模型。 model_kwargs是一个存有模型所有超参数的字典。 最后使用上面定义的_create_vision_transformer函数创建模型。 @register_modeldef vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) return model一共可以选择的模型包括: ViT系列: vit_small_patch16_224 vit_base_patch16_224 vit_base_patch32_224 vit_base_patch16_384 vit_base_patch32_384 vit_large_patch16_224 vit_large_patch32_224 vit_large_patch16_384 vit_large_patch32_384 vit_base_patch16_224_in21k vit_base_patch32_224_in21k vit_large_patch16_224_in21k vit_large_patch32_224_in21k vit_huge_patch14_224_in21k vit_base_resnet50_224_in21k vit_base_resnet50_384 vit_small_resnet26d_224 vit_small_resnet50d_s3_224 vit_base_resnet26d_224 vit_base_resnet50d_224 DeiT系列: vit_deit_tiny_patch16_224 vit_deit_small_patch16_224 vit_deit_base_patch16_224 vit_deit_base_patch16_384 vit_deit_tiny_distilled_patch16_224 vit_deit_small_distilled_patch16_224 vit_deit_base_distilled_patch16_224 vit_deit_base_distilled_patch16_384 以上就是对timm库 vision_transformer.py代码的分析。 如何使用timm库以及 vision_transformer.py代码搭建自己的模型?在搭建我们自己的视觉Transformer模型时,我们可以按照下面的步骤操作:首先 继承timm库的VisionTransformer这个类。添加上自己模型独有的一些变量。重写forward函数。通过timm库的注册器注册新模型。我们以ViT模型的改进版DeiT为例: 首先,DeiT的所有模型列表如下: __all__ = [ 'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224', 'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224', 'deit_base_distilled_patch16_224', 'deit_base_patch16_384', 'deit_base_distilled_patch16_384',]导入VisionTransformer这个类,注册器register_model,以及初始化函数trunc_normal_: from timm.models.vision_transformer import VisionTransformer, _cfgfrom timm.models.registry import register_modelfromtimm.models.layersimporttrunc_normal_DeiT的class名称是DistilledVisionTransformer,它直接继承了VisionTransformer这个类: class DistilledVisionTransformer(VisionTransformer):添加上自己模型独有的一些变量: def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) num_patches = self.patch_embed.num_patches # 位置编码不是ViT中的(b, N, 256), 而变成了(b, N+2, 256), 原因是还有class token和distillation token. self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim)) self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes 0 else nn.Identity() trunc_normal_(self.dist_token, std=.02) trunc_normal_(self.pos_embed, std=.02) self.head_dist.apply(self._init_weights)重写forward函数: def forward_features(self, x): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add the dist_token B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0], x[:, 1] def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) if self.training: return x, x_dist else: # during inference, return the average of both classifier predictions return (x + x_dist) / 2通过timm库的注册器注册新模型: @register_modeldef deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model 重磅!DLer-计算机视觉交流3群已成立! 大家好,这是DLer-计算机视觉微信交流3群!欢迎各位Cver加入DLer-计算机视觉微信交流大家庭。 本群旨在学习交流图像分类、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。希望能给大家提供一个更精准的研讨交流平台!!! 进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明) ??长按识别添加,即可进群! 喜欢您就点个在看!

上一篇:2023-07-27_「转」被熟人推荐的代理公司坑了 , 怎么办 下一篇:2025-06-25_公关部,必须重视高校传播

TAG标签:

17
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价