超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品
来源:量子位GPT-4V来做目标检测?网友实测:还没有准备好。
虽然检测到的类别没问题,但大多数边界框都错放了。
没关系,有人会出手!
那个抢跑GPT-4看图能力几个月的迷你GPT-4升级啦——MiniGPT-v2。
△(左边为GPT-4V生成,右边为MiniGPT-v2生成)而且只是一句简单指令:[grounding] describe this image in detail就实现的结果。
不仅如此,还轻松处理各类视觉任务。
圈出一个物体,提示词前面加个 [identify] 可让模型直接识别出来物体的名字。
当然也可以什么都不加,直接问~
MiniGPT-v2由来自MiniGPT-4的原班人马(KAUST沙特阿卜杜拉国王科技大学)以及Meta的五位研究员共同开发。
上次MiniGPT-4刚出来就引发巨大关注,一时间服务器被挤爆,如今GItHub项目已超22000+星。
此番升级,已经有网友开始用上了~
多视觉任务的通用界面大模型作为各文本应用的通用界面,大家已经司空见惯了。受此灵感,研究团队想要建立一个可用于多种视觉任务的统一界面,比如图像描述、视觉问题解答等。
「如何在单一模型的条件下,使用简单多模态指令来高效完成各类任务?」成为团队需要解决的难题。
简单来说,MiniGPT-v2由三个部分组成:视觉主干、线性层和大型语言模型。
该模型以ViT视觉主干为基础,所有训练阶段都保持不变。从ViT中归纳出四个相邻的视觉输出标记,并通过线性层将它们投影到 LLaMA-2语言模型空间中。
团队建议在训练模型为不同任务使用独特的标识符,这样一来大模型就能轻松分辨出每个任务指令,还能提高每个任务的学习效率。
训练主要分为三个阶段:预训练——多任务训练——多模式指令调整。
最终,MiniGPT-v2 在许多视觉问题解答和视觉接地基准测试中,成绩都优于其他视觉语言通用模型。
最终这个模型可以完成多种视觉任务,比如目标对象描述、视觉定位、图像说明、视觉问题解答以及从给定的输入文本中直接解析图片对象。
感兴趣的朋友,可戳下方Demo链接体验:
https://minigpt-v2.github.io/
https://huggingface.co/spaces/Vision-CAIR/MiniGPT-v2
论文链接:https://arxiv.o?rg/abs/2310.09478GitHub链接:https://github.com/Vision-CAIR/MiniGPT-4参考链接:https://twitter.com/leoyerrrr推荐阅读
西电IEEE Fellow团队出品!最新《Transformer视觉表征学习全面综述》润了!大龄码农从北京到荷兰的躺平生活(文末有福利哟!)如何做好科研?这份《科研阅读、写作与报告》PPT,手把手教你做科研奖金675万!3位科学家,斩获“中国诺贝尔奖”!又一名视觉大牛从大厂离开!阿里达摩院 XR 实验室负责人谭平离职
最新 2022「深度学习视觉注意力 」研究概述,包括50种注意力机制和方法!【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载!2021李宏毅老师最新40节机器学习课程!附课件+视频资料
欢迎大家加入DLer-计算机视觉技术交流群!
大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。
进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)
??长按识别,邀请您进群!
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设、网站改版、域名注册、主机空间、手机网站建设、网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。 项目经理在线