全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2023-06-01_13层网络如何拿下83%精度?极简神经网络架构VanillaNet作者亲自解读

您的位置:首页 >> 新闻 >> 行业资讯

13层网络如何拿下83%精度?极简神经网络架构VanillaNet作者亲自解读 过去几十年里,人工神经网络取得了显著的进展,这归功于一种理念:增加网络的复杂度可以提高性能。 从 AlexNet 引爆了深度学习在计算机视觉的热潮后,研究者们为了提升深度网络的性能,精心地设计出了各种各样的模块,包括 ResNet 中的残差,ViT 中的注意力机制等。然而,从 ResNet 到 ViT 以来,尽管深层的复杂神经网络可以取得很好的性能,但在实际应用中,这些网络的复杂度和硬件亲和程度使其部署时常常会遇到困难。 因此,来自华为诺亚、悉尼大学的研究者们设计了一种极简的神经网络模型 VanillaNet,期望用最简单的,类似 LeNet 和 AlexNet 这样的结构,达到甚至超越现在网络的精度,成为新一代的视觉骨干网络。 本工作的核心是如何让一个浅层网络在没有复杂链接和 attention 的情况下,尽可能地提升精度,针对极简网络面临的非线性大幅下降的技术难题,本工作提出了深层训练和级数激活函数两个方案来解决此问题。最终,6 层的 VanillaNet 可以超过 ResNet-34,13 层的 VanillaNet 在 ImageNet 可以达到 83% 的 top1 精度,超过几百层网络的性能,并展现了非凡的硬件效率优势。 为了更好的帮助大家了解这项研究,机器之心最新一期线上分享邀请到了论文作者之一陈汉亭,为大家解读他们近期的工作 VanillaNet。 分享主题:VanillaNet:深度学习中极简主义的力量 嘉宾简介:陈汉亭,华为诺亚方舟实验室研究员,主要研究方向为深度学习和计算机视觉。他在 NeurIPS/CVPR/TPAMI 等顶会顶刊发表 20 余篇论文,多项研究成果应用于华为产品。他的谷歌学术引用 2000+,其中加法网络、IPT 等工作受到广泛关注。 分享摘要:华为诺亚实验室的研究员提出了一种极简网络架构 VanillaNet,不含残差链接,自注意力等复杂的模块,却可以在计算机视觉任务上取得惊人的性能。在 ImageNet 图像识别任务上,13 层的 VanillaNet 在 ImageNet 可以达到 83% 的 top1 精度,速度超过同精度的 Swin Transformer 两倍以上。 相关链接: 论文链接:https://arxiv.org/abs/2305.12972 直播间:关注机动组视频号,立即预约直播。 交流群:本次直播有 QA 环节,欢迎加入本次直播交流群探讨交流。

上一篇:2018-08-02_SHAI2018上海人工智能大会——「聚焦人工智能,助力创新创业」 下一篇:2018-09-27_业界 | 谷歌的Dataset Search开放至今,为什么还搜不到我的数据集?

TAG标签:

20
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价