全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2024-09-14_100B 的「跨级」跃升!元象发布最大 MoE 开源大模型,「高性能全家桶」系列全部免费

您的位置:首页 >> 新闻 >> 行业资讯

100B 的「跨级」跃升!元象发布最大 MoE 开源大模型,「高性能全家桶」系列全部免费 作者 | 华卫 9 月 13 日,元象 XVERSE 发布中国最大 MoE 开源模型:XVERSE-MoE-A36B。该模型总参数 255B,激活参数 36B,能 达到 100B 模型的性能「跨级」跃升,同时训练时间减少 30%,推理性能提升 100%,使每 token 成本大幅下降。 并且,元象「高性能全家桶」系列全部开源,无条件免费商用,海量中小企业、研究者和开发者能按需选择。 MoE(Mixture of Experts)是业界前沿的混合专家模型架构 ,将多个细分领域的专家模型组合成一个超级模型,打破了传统扩展定律(Scaling Law)的局限,可在扩大模型规模时,不显著增加训练和推理的计算成本,并保持模型性能最大化。出于这个原因,行业前沿模型包括谷歌 Gemini-1.5、OpenAI 的 GPT-4 、马斯克旗下 xAI 公司的 Grok 等大模型都使用了 MoE。 免费下载大模型 Hugging Face:https://huggingface.co/xverse/XVERSE-MoE-A36B 魔搭:https://modelscope.cn/models/xverse/XVERSE-MoE-A36B Github:https://github.com/xverse-ai/XVERSE-MoE-A36B 商业应用上更进一步 元象此次开源,在商业应用上也更进一步。 元象基于 MoE 模型自主研发的 AI 角色扮演与互动网文 APP Saylo,通过逼真的 AI 角色扮演和有趣的开放剧情,火遍港台,下载量在中国台湾和香港娱乐榜分别位列第一和第三。 MoE 训练范式具有「更高性能、更低成本」优势,元象在通用预训练基础上,使用 海量剧本数据「继续预训练」(Continue Pre-training),并与传统 SFT(监督微调)或 RLHF(基于人类反馈的强化学习)不同,采用了 大规模语料知识注入,让模型既保持了强大的通用语言理解能力,又大幅提升「剧本」这一特定应用领域的表现。 在商业应用上,元象大模型是 国内最早一批、广东前五 获得国家备案的大模型,可向全社会提供服务。 从去年起,元象大模型已陆续与 QQ 音乐、虎牙直播、全民 K 歌、腾讯云等深度合作与应用探索,为文化、娱乐、旅游、金融领域打造创新领先的用户体验。目前,元象累计融资金额已超过 2 亿美元,投资机构包括腾讯、高榕资本、五源资本、高瓴创投、红杉中国、淡马锡和 CPE 源峰等。 MoE 技术自研与创新 MoE 是目前业界最前沿的模型框架,由于技术较新,国内外开源模型或学术研究同步探索。元象在此次升级中围绕效率和效果进行了如下探索: 效率方面 MoE 架构与 4D 拓扑设计:MoE 架构的关键特性是由多个专家组成。由于专家之间需要大量的信息交换,通信负担极重。为了解决这个问题,元象采用了 4D 拓扑架构,平衡了通信、显存和计算资源的分配。这种设计优化了计算节点之间的通信路径,提高了整体计算效率。 专家路由与预丢弃策略:MoE 的另一个特点是“专家路由机制”,即需要对不同的输入进行分配,并丢弃一些超出专家计算容量的冗余数据。为此元象团队设计一套预丢弃策略,减少不必要的计算和传输。同时在计算流程中实现了高效的算子融合,进一步提升模型的训练性能。 通信与计算重叠: 由于 MoE 架构的专家之间需要大量通信,会影响整体计算效率。为此团队设计了“多维度的通信与计算重叠”机制,即在进行参数通信的同时,最大比例并行地执行计算任务,从而减少通信等待时间。 效果方面 专家权重:MoE 中的专家总数为 N ,每个 token 会选择 topK 个专家参与后续的计算,由于专家容量的限制,每个 token 实际选择到的专家数为 M,MN。被选择到的专家计算完之后,会通过加权平均的方式汇总得到每个 token 的计算结果。这里专家的权重如何设置是一个问题,元象通过对比实验的方式来进行选择。根据对比实验的效果,最终选择实验 2 的设置进行正式实验。 实验 1:权重在 topM 范围内归一化 实验 2:权重在 topK 范围内归一化 实验 3:权重在 topN 范围内归一化 实验 4:权重都为 1 对比实验结果 举例说明,假设 N=8,K=4,M=3(2 号专家上 token 被丢弃),不同专家权重的计算方式所得的权重如下图: 数据动态切换: 元象以往开源的模型,往往在训练前就锁定了训练数据集,并在整个训练过程中保持不变。这种做法虽然简单,但会受制于初始数据的质量和覆盖面。此次 MoE 模型的训练借鉴了"课程学习"理念,在训练过程中实现了动态数据切换,在不同阶段多次引入新处理的高质量数据,并动态调整数据采样比例。 这让模型不再被初始语料集所限制,而是能够持续学习新引入的高质量数据,提升了语料覆盖面和泛化能力。同时通过调整采样比例,也有助于平衡不同数据源对模型性能的影响。 不同数据版本的效果曲线图 学习率调度策略(LR Scheduler): 在训练过程中动态切换数据集,虽有助于持续引入新知识,但也给模型带来了新的适应挑战。为了确保模型能快速且充分地学习新进数据,团队对学习率调度器进行了优化调整,在每次数据切换时会根据模型收敛状态,相应调整学习率。实验表明,这一策略有效提升了模型在数据切换后的学习速度和整体训练效果。 下图是整个训练过程中 MMLU、HumanEval 两个评测数据集的效果曲线图。 训练过程中 MMLU、HumanEval 的性能曲线持续拔高 通过设计与优化,元象 MoE 模型与其 Dense 模型 XVERSE-65B-2 相比,训练时间减少 30%、推理性能提升 100%,模型效果更佳。 内容推荐2024年8月18-19日,AICon 全球人工智能开发与应用大会·上海站成功举办,汇聚超过60位大模型行业先锋,全方位剖析大模型训练与推理机制、多模态融合、智能体Agent前沿进展、检索增强(RAG)生成策略、端侧模型优化与应用等热点内容。经过嘉宾授权,「AI前线」为你独家整理了一份演讲PPT合集,不容错过。关注「AI前线」,回复关键词「PPT」免费获取。 会议推荐AI 应用开发、大模型基础设施与算力优化、出海合规与大模型安全、云原生工程、演进式架构、线上可靠性、新技术浪潮下的大前端…… 不得不说,QCon 还是太全面了。现在报名可以享受 9 折优惠,详情请联系票务经理 17310043226 咨询。 今日荐文 OpenAI 发布最新模型 o1,这次变为华人扛大旗?一分钟搞出 3D 版贪吃蛇,好用但小贵 Python 核心开发人员突遭停职,社区陷入一片混乱 走近张大鹏教授:哈工大走出的中国第一位人工智能博士 36 亿融资“造假”被揭穿!挣钱太难了,前苹果 AI 工程师 3 年打造的“欧洲 OpenAI”宣告退出模型竞赛 亏太多!LG 1400人自愿离职,赔偿金达36月工资;马斯克发悟空AI图变天命人;实习生要开直升机、做饭?官方回应 | AI周报你也「在看」吗??? 阅读原文

上一篇:2022-05-10_惹上官司两年后,Clearview AI接受禁令,同意永久禁止向私营企业出售人脸识别技术 下一篇:2022-04-08_马斯克又双叒叕食言背后:自动驾驶汽车为何长期身陷「慢车道」?

TAG标签:

17
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价