全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-09-01_图形学的未来:投身业界、布料仿真大牛王华民谈实时模拟的前世今生

您的位置:首页 >> 新闻 >> 行业资讯

图形学的未来:投身业界、布料仿真大牛王华民谈实时模拟的前世今生 机器之心专栏 作者:王华民(凌迪科技Style3D首席科学家兼凌迪研究院院长)最近一段时间,数字人、元宇宙(metaverse)、云游戏等新概念变得异常炙手可热。很多圈外人士对此兴奋不已,觉得科幻电影中的场景马上就要实现了。可很少有人会指出,在通往虚拟未来的道路上其实还有一块绊脚石:实时物理模拟。本文为王华民教授结合自己的研究对实时物理模拟的一些看法。 不管是图形学圈内还是圈外,实时的重要性一直缺乏足够认识。长期以来,圈内存在着一个误解:实时技术应该留给工业界开发。不少人觉得实时技术无非是把非实时技术优化一下。这种误解造成了图形学今天的尴尬局面。一方面,非实时技术的应用基本仅在后期视效,而这一块已相当饱和。另一方面,大量亟需实时技术的应用,如高质量VR,数字人、虚拟试衣、虚拟手术等等,却迟迟无法落地。 随着 NVIDIA RTX 方案的推出,实时渲染的问题已经逐渐解决。相比之下,实时物理模拟变得非常重要。和渲染不同,模拟的多样性决定了实时模拟无法单纯依赖硬件解决。RTX的加速结构也只能解决一小部分模拟问题。 过去 二十年前,当我跨入图形学圈的时候,是不存在物理模拟这个概念的。当时模拟的主要应用是制作电影特效。而实时物理模拟被认为是mission impossible。 加勒比海盗:世界尽头(2007)中的漩涡效果,由 ILM 的 Frank Lossaso-Petterson 利用斯坦福大学的 PhysBAM 物理模拟引擎完成。Frank 与本文作者是斯坦福的同研究组同学。 从技术上讲,物理模拟可以划分为流体模拟和形变体模拟两大类。这样的划分不太严格,但形变体模拟,包括弹性体模拟、布料模拟、头发模拟等等,有很多的共同之处。这与流体模拟是不太一样的。这与流体模拟有很大不同。 与流体相比,形变体更加常见,应用的范围也更加广阔。读博期间(2004 年 - 2009 年),我主要研究的是流体。毕业以后,我逐渐意识到形变体的重要性,改为研究形变体。 早期的实时物理模拟技术非常简陋。很多时候需要牺牲模拟质量或者物理正确性。 回过头来看,Projective Dynamics (SIGGRAPH 2014) 是一篇非常重要的论文。它的重要性不在于提出的技术本身,而在于让很多人意识到物理模拟与非线性优化之间的相关性。从此大家的思路被打开了。 以此出发,包括我们在内的各个研究团队不断提升形变体模拟的效率,使得新一代的物理模拟引擎越来越快。 值得一提的是,我们团队主要研究 GPU 上的物理模拟。和 CPU 相比,GPU 的并行能力更加出众。我们的模拟引擎的表现也更加出众。 与此同时,我们的模拟算法也需要适配GPU硬件的并行特性。想直接把CPU上的技术搬上GPU是很难成功的。 现在 时至今日,我觉得高质量的实时形变体模拟已经部分可行了。 首先说说游戏。游戏里使用的形变体模拟大多以 position-based dynamics (PBD) 技术为主。一个典型的实例是 NVIDIA 的 NvCloth。作为一个十多年旧的技术,PBD依旧活跃在今天,其实有着深刻的原因。 一个最主要的原因在于现如今很多游戏需要考虑到跨平台,特别是移动端的的运行效率。而在一个游戏中,留给物理模拟的资源非常有限。对于模拟算法而言,内存访问通常会导致很大的计算成本。像PBD这样缺乏物理意义的算法就显得廉价且高效。 PBD 的缺点也很明显。当模拟需要的网格规模变大(比如超过 1024 个顶点),PBD 的效率就不再那么优秀了。 遗憾的是,目前似乎并没有比 PBD 更适合游戏的实时模拟方法。如何为游戏提供高质量实时模拟将会是一个很重要的难题。 倘若我们把硬件资源的限制放宽些,允许模拟引擎可以完全使用最新的 GPU,那现状还是比较乐观的。 比如,我们 2016 年的工作,已经能在 GeForce GTX TITAN X 上实时模拟近 6 万个四面体网格的超弹性效果 (hyperelasticity)。 一条被拉得扭曲的龙。 而今年(2021)我们在 SIGGRAPH 上展示的工作,更是能够在 2080Ti 上实时模拟一件有着 11 万个三角形的衬衫。 形变体模拟的开发主要有两个技术门槛:运动求解(dynamics solver)与碰撞处理(collision handling)。在人体组织、肌肉等需要四面体网格模拟的场景中,运动求解通常是计算开销的主要来源。而对于服装、头发等模拟而言,碰撞处理尤为重要。 如何安全、稳定、高效地处理自碰撞,是所有形变体模拟引擎绕不开的问题。 需要提到的一点。大多数非实时碰撞处理技术无法在GPU上有效并行。因此,我们的团队最近把大量的精力放在利用GPU进行高效碰撞处理上。我们今年的工作将会是一个重要的开端。 未来 在不久的将来,GPU 毫无疑问会越来越快。 但我们不能单纯把实时模拟寄希望于硬件的提升上。过去,实时模拟技术的发展同时依赖于硬件的提升与算法的支持。未来,我们同样需要开发更高效、更匹配硬件的模拟算法,来实现更高质量的物理模拟。 我觉得,多重网格(multigrid) 多 GPU 并行 等等,都会是值得研究的方向。 事实上,我最近在 SIGGRAPH 2021 发表的工作,已经可以以一秒一帧的效率模拟一千万个三角形的服装了。 对于流体,我其实特别喜欢基于各种波的实时水面模拟算法。我之前在佐治亚理工的同学,现在在奥地利IST的Chris Wojtan教授就做过很多这方面研究。当然,流体的表现形式太多样了。如果想实时模拟大规模的水花四溅还需要更多的工作。 以假乱真的实时模拟效果出现的那天,不会太遥远。 作者简介:王华民,俄亥俄州立大学终身教授,四届 SIGGRAPH 技术论文委员会委员,公认的世界级图形学科学家。他还是凌迪科技 Style3D 首席科学家兼凌迪研究院院长。他曾以唯一作者身份独立完成四篇 SIGGRAPH(全球规模最大、影响最大的图形学会议)论文。王华民的论文也屡屡被指定为斯坦福、UC 伯克利等名校图形学课程的参考文献。 他的学生遍布知名大厂,从硅谷的 Google、Facebook、Adobe,到国内的阿里、字节、百度等图形和模拟开发领域的重要岗位,都有他曾授业解惑的门徒。业内流传:如果你研究布料仿真,就不可能没读过王华民教授的论文。 与吴恩达共话ML未来发展,2021亚马逊云科技中国峰会可「玩」可「学」 2021亚马逊云科技中国峰会「第二站」将于9月9日-9月14日全程在线上举办。对于AI开发者来说,9月14日举办的「人工智能和机器学习峰会」最值得关注。 当天上午,亚马逊云科技人工智能与机器学习副总裁Swami Sivasubramanian 博士与 AI 领域著名学者、Landing AI 创始人吴恩达(Andrew Ng )博士展开一场「炉边谈话」。 不仅如此,「人工智能和机器学习峰会」还设置了四大分论坛,分别为「机器学习科学」、「机器学习的影响」、「无需依赖专业知识的机器学习实践」和「机器学习如何落地」,从技术原理、实际场景中的应用落地以及对行业领域的影响等多个方面详细阐述了机器学习的发展。 点击阅读原文,立即报名。 ?THE END 转载请联系本公众号获得授权 投稿或寻求报道:content@jiqizhixin.com 阅读原文

上一篇:2023-10-04_数学家孜孜以求的数学证明本质是一种社会契约,为什么这么说? 下一篇:2023-04-16_「转」VDSR、DRRN、LapSRN、RCAN、DSRN…你都掌握了吗?一文总结超分辨率分析必备经典模型(二)

TAG标签:

17
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价