高性能无锁并发框架Disruptor,太强了!
点击关注公众号,”技术干货”及时达!前言Disruptor是一个开源框架,研发的初衷是为了解决高并发下队列锁的问题,最早由LMAX提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单
官网:http://lmax-exchange.github.io/disruptor/
目前,包括Apache Storm、Camel、Log4j2在内的很多知名项目都应用了Disruptor以获取高性能
「觉得不错,希望点赞,在看,转发支持一下,谢谢」
「文章内容收录到个人网站,方便阅读」:http://hardyfish.top/
为什么会产生Disruptor框架「「目前Java内置队列保证线程安全的方式:」」
ArrayBlockingQueue:基于数组形式的队列,通过加锁的方式,来保证多线程情况下数据的安全;
LinkedBlockingQueue:基于链表形式的队列,也通过加锁的方式,来保证多线程情况下数据的安全;
ConcurrentLinkedQueue:基于链表形式的队列,通过CAS的方式
我们知道,在编程过程中,加锁通常会严重地影响性能,所以尽量用无锁方式,就产生了Disruptor这种无锁高并发框架
基本概念参考地址:https://github.com/LMAX-Exchange/disruptor/wiki/Introduction#core-concepts
RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;
Sequencer——序号管理器,生产同步的实现者,负责消费者/生产者各自序号、序号栅栏的管理和协调,Sequencer有单生产者,多生产者两种不同的模式,里面实现了各种同步的算法;
Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况,disruptor里面大部分的并发代码都是通过对Sequence的值同步修改实现的,而非锁,这是disruptor高性能的一个主要原因;
SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理
EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。
EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。
Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。
Wait Strategy:Wait Strategy决定了一个消费者怎么等待生产者将事件(Event)放入Disruptor中。
等待策略源码地址:https://github.com/LMAX-Exchange/disruptor/blob/master/src/main/java/com/lmax/disruptor/WaitStrategy.java
「「BlockingWaitStrategy」」
Disruptor的默认策略是BlockingWaitStrategy。在BlockingWaitStrategy内部是使用锁和condition来控制线程的唤醒。BlockingWaitStrategy是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现。
「「SleepingWaitStrategy」」
SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,通过使用LockSupport.parkNanos(1)来实现循环等待。
「「YieldingWaitStrategy」」
YieldingWaitStrategy是可以使用在低延迟系统的策略之一。YieldingWaitStrategy将自旋以等待序列增加到适当的值。在循环体内,将调用Thread.yield()以允许其他排队的线程运行。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
「「BusySpinWaitStrategy」」
性能最好,适合用于低延迟的系统。在要求极高性能且事件处理线程数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
「「PhasedBackoffWaitStrategy」」
自旋 + yield + 自定义策略,CPU资源紧缺,吞吐量和延迟并不重要的场景。
使用举例参考地址:https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started
dependency
groupIdcom.lmax/groupId
artifactIddisruptor/artifactId
version3.3.4/version
/dependency
//定义事件event 通过Disruptor 进行交换的数据类型。
publicclassLongEvent{
privateLongvalue;
publicLonggetValue(){
returnvalue;
}
publicvoidsetValue(Longvalue){
this.value=value;
}
}
publicclassLongEventFactoryimplementsEventFactoryLongEvent{
publicLongEventnewInstance(){
returnnewLongEvent();
}
}
//定义事件消费者
publicclassLongEventHandlerimplementsEventHandlerLongEvent{
publicvoidonEvent(LongEventevent,longsequence,booleanendOfBatch)throwsException{
System.out.println("消费者:"+event.getValue());
}
}
//定义生产者
publicclassLongEventProducer{
publicfinalRingBufferLongEventringBuffer;
publicLongEventProducer(RingBufferLongEventringBuffer){
this.ringBuffer=ringBuffer;
}
publicvoidonData(ByteBufferbyteBuffer){
//1.ringBuffer事件队列下一个槽
longsequence=ringBuffer.next();
Longdata=null;
try{
//2.取出空的事件队列
LongEventlongEvent=ringBuffer.get(sequence);
data=byteBuffer.getLong(0);
//3.获取事件队列传递的数据
longEvent.setValue(data);
try{
Thread.sleep(10);
}catch(InterruptedExceptione){
//TODOAuto-generatedcatchblock
e.printStackTrace();
}
}finally{
System.out.println("生产这准备发送数据");
//4.发布事件
ringBuffer.publish(sequence);
}
}
}
publicclassDisruptorMain{
publicstaticvoidmain(String[]args){
//1.创建一个可缓存的线程提供线程来出发Consumer的事件处理
ExecutorServiceexecutor=Executors.newCachedThreadPool();
//2.创建工厂
EventFactoryLongEventeventFactory=newLongEventFactory();
//3.创建ringBuffer大小
intringBufferSize=1024*1024;//ringBufferSize大小一定要是2的N次方
//4.创建Disruptor
DisruptorLongEventdisruptor=newDisruptorLongEvent(eventFactory,ringBufferSize,executor,
ProducerType.SINGLE,newYieldingWaitStrategy());
//5.连接消费端方法
disruptor.handleEventsWith(newLongEventHandler());
//6.启动
disruptor.start();
//7.创建RingBuffer容器
RingBufferLongEventringBuffer=disruptor.getRingBuffer();
//8.创建生产者
LongEventProducerproducer=newLongEventProducer(ringBuffer);
//9.指定缓冲区大小
ByteBufferbyteBuffer=ByteBuffer.allocate(8);
for(inti=1;i=100;i++){
byteBuffer.putLong(0,
producer.onData(byteBuffer);
}
//10.关闭disruptor和executor
disruptor.shutdown();
executor.shutdown();
}
}
核心设计原理Disruptor通过以下设计来解决队列速度慢的问题:
「「环形数组结构:」」
为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好
??
原因:CPU缓存是由很多个缓存行组成的。每个缓存行通常是64字节,并且它有效地引用主内存中的一块儿地址。一个Java的long类型变量是8字节,因此在一个缓存行中可以存8个long类型的变量。CPU每次从主存中拉取数据时,会把相邻的数据也存入同一个缓存行。在访问一个long数组的时候,如果数组中的一个值被加载到缓存中,它会自动加载另外7个。因此你能非常快的遍历这个数组。
?
?「「元素位置定位:」」
数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
「「无锁设计:」」
每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据,整个过程通过原子变量CAS,保证操作的线程安全
数据结构框架使用RingBuffer来作为队列的数据结构,RingBuffer就是一个可自定义大小的环形数组。
除数组外还有一个序列号(sequence),用以指向下一个可用的元素,供生产者与消费者使用。
原理图如下所示:
Sequencemark:Disruptor通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。
「「数组+序列号设计的优势是什么呢?」」
回顾一下HashMap,在知道索引(index)下标的情况下,存与取数组上的元素时间复杂度只有O(1),而这个index我们可以通过序列号与数组的长度取模来计算得出,index=sequence % table.length。当然也可以用位运算来计算效率更高,此时table.length必须是2的幂次方。
写数据流程单线程写数据的流程:
申请写入m个元素;若是有m个元素可以入,则返回最大的序列号。这儿主要判断是否会覆盖未读的元素;若是返回的正确,则生产者开始写入元素。使用场景经过测试,Disruptor的的延时和吞吐量都比ArrayBlockingQueue优秀很多,所以,当你在使用ArrayBlockingQueue出现性能瓶颈的时候,你就可以考虑采用Disruptor的代替。
参考:https://github.com/LMAX-Exchange/disruptor/wiki/Performance-Results
当然,Disruptor性能高并不是必然的,所以,是否使用还得经过测试。
Disruptor的最常用的场景就是“生产者-消费者”场景,对场景的就是“一个生产者、多个消费者”的场景,并且要求顺序处理。
举个例子,我们从MySQL的BigLog文件中顺序读取数据,然后写入到ElasticSearch(搜索引擎)中。在这种场景下,BigLog要求一个文件一个生产者,那个是一个生产者。而写入到ElasticSearch,则严格要求顺序,否则会出现问题,所以通常意义上的多消费者线程无法解决该问题,如果通过加锁,则性能大打折扣
「参考:」
https://tech.meituan.com/2016/11/18/disruptor.html
https://github.com/LMAX-Exchange/disruptor/wiki
点击关注公众号,”技术干货”及时达!
阅读原文
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设、网站改版、域名注册、主机空间、手机网站建设、网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。 项目经理在线