全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2019-07-25_Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead

您的位置:首页 >> 新闻 >> 行业资讯

Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead 机器之心报道 参与:思源、路、泽南 快来试试 Lookahead 最优化方法啊,调参少、收敛好、速度还快,大牛用了都说好。 最优化方法一直主导着模型的学习过程,没有最优化器模型也就没了灵魂。好的最优化方法一直是 ML 社区在积极探索的,它几乎对任何机器学习任务都会有极大的帮助。 从最开始的批量梯度下降,到后来的随机梯度下降,然后到 Adam 等一大帮基于适应性学习率的方法,最优化器已经走过了很多年。尽管目前 Adam 差不多已经是默认的最优化器了,但从 17 年开始就有各种研究表示 Adam 还是有一些缺陷的,甚至它的收敛效果在某些环境下比 SGD 还差。 为此,我们期待更好的标准优化器已经很多年了... 最近,来自多伦多大学向量学院的研究者发表了一篇论文,提出了一种新的优化算法——Lookahead。值得注意的是,该论文的最后作者 Jimmy Ba 也是原来 Adam 算法的作者,Hinton 老爷子也作为三作参与了该论文,所以作者阵容还是很强大的。 论文地址:https://arxiv.org/abs/1907.08610v1 Lookahead 算法与已有的方法完全不同,它迭代地更新两组权重。直观来说,Lookahead 算法通过提前观察另一个优化器生成的「fast weights」序列,来选择搜索方向。该研究发现,Lookahead 算法能够提升学习稳定性,不仅降低了调参需要的功夫,同时还能提升收敛速度与效果。 实验证明,Lookahead 算法的性能显著优于 SGD 和 Adam,即使 Lookahead 使用的是在 ImageNet、CIFAR-10/100、神经机器翻译和 Penn Treebank 任务上的默认超参数设置。 最优化器犯了什么错 SGD 算法虽然简洁,但其在神经网络训练中的性能堪比高级二阶优化方法。尽管 SGD 每一次用小批量算出来的更新方向可能并非那么精确,但更新多了效果却出乎意料地好。 一般而言,SGD 各种变体可以分成两大类:1)自适应学习率机制,如 AdaGrad 和 Adam;2)加速机制,如 Polyak heavyball 和 Nesterov momentum 等。这两种方法都利用之前累积的梯度信息实现快速收敛,它们希望借鉴以往的更新方向。但是,要想实现神经网络性能提升,通常需要花销高昂的超参数调整。 其实很多研究者都发现目前的最优化方法可能有些缺点,不论是 Adam 还是带动量的 SGD,它们都有难以解决的问题。例如我们目前最常用的 Adam,我们拿它做实验是没啥问题的,但要是想追求收敛性能,那么最好还是用 SGD+Momentum。但使用动量机制又会有新的问题,我们需要调整多个超参数以获得比较好的效果,不能像 Adam 给个默认的学习率 0.0001 就差不多了。 在 ICLR 2018 的最佳论文 On the Convergence of Adam and Beyond 中,研究者明确指出了 Adam 收敛不好的原因。他们表明在利用历史梯度的移动均值情况下,模型只能根据短期梯度信息为每个参数设计学习率,因此也就导致了收敛性表现不太好。 那么 Hinton 等研究者是怎样解决这个问题的?他们提出的最优化方法能获得高收敛性能的同时,还不需要调参吗? 多伦多大学的「Look ahead」 Michael R. Zhang 和 Geoffrey Hinton 等研究者提出了一种新的最优化方法 Lookahead,该算法与之前已有的方法都不相同。此外,因为 Lookahead 与其它最优化器是正交的,这意味着我们可以使用 Lookahead 加强已有最优化方法的性能。 如下所示为 Lookahead 的直观过程,它会维护两套权重。Lookahead 首先使用内部循环中的 SGD 等标准优化器,更新 k 次「Fast weights」,然后以最后一个 Fast weights 的方向更新「slow weights」。如下 Fast Weights 每更新 5 次,Slow weights 就会更新一次。 该研究表明这种更新机制能够有效地降低方差。研究者发现 Lookahead 对次优超参数没那么敏感,因此它对大规模调参的需求没有那么强。此外,使用 Lookahead 及其内部优化器(如 SGD 或 Adam),还能实现更快的收敛速度,因此计算开销也比较小。 研究者在多个实验中评估 Lookahead 的效果。比如在 CIFAR 和 ImageNet 数据集上训练分类器,并发现使用 Lookahead 后 ResNet-50 和 ResNet-152 架构都实现了更快速的收敛。 研究者还在 Penn Treebank 数据集上训练 LSTM 语言模型,在 WMT 2014 English-to-German 数据集上训练基于 Transformer 的神经机器翻译模型。在所有任务中,使用 Lookahead 算法能够实现更快的收敛、更好的泛化性能,且模型对超参数改变的鲁棒性更强。 这些实验表明 Lookahead 对内部循环优化器、fast weight 更新次数以及 slow weights 学习率的改变具备鲁棒性。 Lookahead Optimizer 怎么做 Lookahead 迭代地更新两组权重:slow weights φ 和 fast weights θ,前者在后者每更新 k 次后更新一次。Lookahead 将任意标准优化算法 A 作为内部优化器来更新 fast weights。 使用优化器 A 经过 k 次内部优化器更新后,Lookahead 通过在权重空间 θ ? φ 中执行线性插值的方式更新 slow weights,方向为最后一个 fast weights。 slow weights 每更新一次,fast weights 将被重置为目前的 slow weights 值。Lookahead 的伪代码见下图 Algorithm 1。 其中最优化器 A 可能是 Adam 或 SGD 等最优化器,内部的 for 循环会用常规方法更新 fast weights θ,且每次更新的起始点都是从当前的 slow weights φ 开始。最终模型使用的参数也是慢更新那一套,因此快更新相当于做了一系列实验,然后慢更新再根据实验结果选一个比较好的方向,这有点类似 Nesterov Momentum 的思想。 看上去这只是一个小技巧?似乎它应该对实际的参数更新没什么重要作用?那么继续看看它到底为什么能 Work。 Lookahead 为什么能 Work 标准优化方法通常需要谨慎调整学习率,以防止振荡和收敛速度过慢,这在 SGD 设置中更加重要。而 Lookahead 能借助较大的内部循环学习率减轻这一问题。 当 Lookahead 向高曲率方向振荡时,fast weights 更新在低曲率方向上快速前进,slow weights 则通过参数插值使振荡平滑。fast weights 和 slow weights 的结合改进了高曲率方向上的学习,降低了方差,并且使得 Lookahead 在实践中可以实现更快的收敛。 另一方面,Lookahead 还能提升收敛效果。当 fast weights 在极小值周围慢慢探索时,slow weight 更新促使 Lookahead 激进地探索更优的新区域,从而使测试准确率得到提升。这样的探索可能是 SGD 更新 20 次也未必能够到达的水平,因此有效地提升了模型收敛效果。 如上为 ResNet-32 在 CIFAR-100 训练 100 个 Epoch 后的可视化结果。在从上图可以看到模型已经接近最优解了,右上的 SGD 还会慢慢探索比较好的区域,因为当时的梯度已经非常小了。但是右下的 Lookahead 会根据 slow weights(紫色)探索到更好的区域。 当然这里只是展示了 Lookahead 怎么做,至于该算法更新步长、内部学习率等参数怎么算,读者可以查阅原论文。此外,Hinton 等研究者还给出了详细的收敛性分析,感兴趣的读者也可以细细阅读,毕竟当年 ICLR 2018 最佳论文可是找出了 Adam 原论文收敛性分析的错误。 实验分析 研究人员在一系列深度学习任务上使用 Lookahead 优化器和业内最强的基线方法进行了对比,其中包括在 CIFAR-10/CIFAR-100、ImageNet 上的图像分类任务。此外,研究人员在 Penn Treebank 数据集上训练了 LSTM 语言模型,也探索了基于 Transformer 的神经机器翻译模型在 WMT 2014 英语-德语数据集上的表现。对于所有实验,每个算法都使用相同数量的训练数据。 图 5:不同优化算法的性能比较。(左)在 CIFAR-100 上的训练损失。(右)使用不同优化器的 ResNet-18 在 CIFAR 数据集上的验证准确率。研究者详细研究了其它优化器的学习率和权重衰减(见论文附录 C)。Lookahead 和 Polyak 超越了 SGD。 图 6:ImageNet 的训练损失。星号表示激进的学习率衰减机制,其中 LR 在迭代 30、48 和 58 次时衰减。右表展示了使用 Lookahead 和 SGD 的 ResNet-50 的验证准确率。 图 7:在 Penn Treebank 和 WMT-14 机器翻译任务上的优化性能。 从这些实验中,可以得到如下结论: 对于内部优化算法、k 和 α 的鲁棒性:研究人员在 CIFAR 数据集上的实验表明,Lookahead 可以始终如一地在不同初始超参数设置中实现快速收敛。我们可以看到 Lookahead 可以在基础优化器上使用更高的学习率进行训练,且无需对 k 和 α 进行大量调整。 内循环和外循环评估:研究人员发现,在每个内循环中 fast weights 可能会导致任务性能显著下降——这证实了研究者的分析:内循环更新的方差更高。 本文为机器之心报道,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com 投稿或寻求报道:content@jiqizhixin.com 广告 & 商务合作:bd@jiqizhixin.com

上一篇:2020-06-10_WAIC 开发者日Daniel Povey:在中国,打造新一代的「Kaldi」 下一篇:2023-06-09_智源「悟道3.0」大模型系列问世,这次不拼参数,开源开放成为主角

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价