全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2019-08-29_如何将Numpy加速700倍?用 CuPy 呀

您的位置:首页 >> 新闻 >> 行业资讯

如何将Numpy加速700倍?用 CuPy 呀 选自towardsdatascience 作者:George Seif机器之心编译参与:杜伟、张倩作为 Python 语言的一个扩展程序库,Numpy 支持大量的维度数组与矩阵运算,为 Python 社区带来了很多帮助。借助于 Numpy,数据科学家、机器学习实践者和统计学家能够以一种简单高效的方式处理大量的矩阵数据。那么 Numpy 速度还能提升吗?本文介绍了如何利用 CuPy 库来加速 Numpy 运算速度。就其自身来说,Numpy 的速度已经较 Python 有了很大的提升。当你发现 Python 代码运行较慢,尤其出现大量的 for-loops 循环时,通常可以将数据处理移入 Numpy 并实现其向量化最高速度处理。 但有一点,上述 Numpy 加速只是在 CPU 上实现的。由于消费级 CPU 通常只有 8 个核心或更少,所以并行处理数量以及可以实现的加速是有限的。 这就催生了新的加速工具——CuPy 库。 何为 CuPy? CuPy 是一个借助 CUDA GPU 库在英伟达 GPU 上实现 Numpy 数组的库。基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。 CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。只要用兼容的 CuPy 代码替换 Numpy 代码,用户就可以实现 GPU 加速。 CuPy 支持 Numpy 的大多数数组运算,包括索引、广播、数组数学以及各种矩阵变换。 如果遇到一些不支持的特殊情况,用户也可以编写自定义 Python 代码,这些代码会利用到 CUDA 和 GPU 加速。整个过程只需要 C++格式的一小段代码,然后 CuPy 就可以自动进行 GPU 转换,这与使用 Cython 非常相似。 在开始使用 CuPy 之前,用户可以通过 pip 安装 CuPy 库: pipinstallcupy 使用 CuPy 在 GPU 上运行 为符合相应基准测试,PC 配置如下: i7–8700k CPU 1080 Ti GPU 32 GB of DDR4 3000MHz RAM CUDA 9.0 CuPy 安装之后,用户可以像导入 Numpy 一样导入 CuPy: importnumpyasnp importcupyascp importtime 在接下来的编码中,Numpy 和 CuPy 之间的切换就像用 CuPy 的 cp 替换 Numpy 的 np 一样简单。如下代码为 Numpy 和 CuPy 创建了一个具有 10 亿 1』s 的 3D 数组。为了测量创建数组的速度,用户可以使用 Python 的原生 time 库: ###NumpyandCPU s=time.time() *x_cpu=np.ones((1000,1000,1000))* e=time.time() print(e-s)###CuPyandGPU s=time.time() *x_gpu=cp.ones((1000,1000,1000))* e=time.time() print(e-s) 这很简单! 令人难以置信的是,即使以上只是创建了一个数组,CuPy 的速度依然快得多。Numpy 创建一个具有 10 亿 1』s 的数组用了 1.68 秒,而 CuPy 仅用了 0.16 秒,实现了 10.5 倍的加速。 但 CuPy 能做到的还不止于此。 比如在数组中做一些数学运算。这次将整个数组乘以 5,并再次检查 Numpy 和 CuPy 的速度。 ###NumpyandCPU s=time.time() *x_cpu*=5* e=time.time() print(e-s)###CuPyandGPU s=time.time() *x_gpu*=5* e=time.time() print(e-s) 果不其然,CuPy 再次胜过 Numpy。Numpy 用了 0.507 秒,而 CuPy 仅用了 0.000710 秒,速度整整提升了 714.1 倍。 现在尝试使用更多数组并执行以下三种运算: 数组乘以 5 数组本身相乘 数组添加到其自身 ###NumpyandCPU s=time.time() *x_cpu*=5 x_cpu*=x_cpu x_cpu+=x_cpu* e=time.time() print(e-s)###CuPyandGPU s=time.time() *x_gpu*=5 x_gpu*=x_gpu x_gpu+=x_gpu* e=time.time() print(e-s) 结果显示,Numpy 在 CPU 上执行整个运算过程用了 1.49 秒,而 CuPy 在 GPU 上仅用了 0.0922 秒,速度提升了 16.16 倍。 数组大小(数据点)达到 1000 万,运算速度大幅度提升 使用 CuPy 能够在 GPU 上实现 Numpy 和矩阵运算的多倍加速。值得注意的是,用户所能实现的加速高度依赖于自身正在处理的数组大小。下表显示了不同数组大小(数据点)的加速差异: 数据点一旦达到 1000 万,速度将会猛然提升;超过 1 亿,速度提升极为明显。Numpy 在数据点低于 1000 万时实际运行更快。此外,GPU 内存越大,处理的数据也就更多。所以用户应当注意,GPU 内存是否足以应对 CuPy 所需要处理的数据。 原文链接:https://towardsdatascience.com/heres-how-to-use-cupy-to-make-numpy-700x-faster-4b920dda1f56 本文为机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com投稿或寻求报道:content@jiqizhixin.com广告 & 商务合作:bd@jiqizhixin.com

上一篇:2023-03-28_CVPR 2023 | 一键去除视频闪烁,该研究提出了一个通用框架 下一篇:2021-11-26_朋友们,拯救“书荒”神级书单来了!

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价