全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2018-12-30_清华大学NLP组年末巨献:机器翻译必读论文列表

您的位置:首页 >> 新闻 >> 行业资讯

清华大学NLP组年末巨献:机器翻译必读论文列表 机器之心编辑 参与:路、李泽南 昨天,清华大学自然语言处理组(THUNLP)整理的机器翻译论文阅读清单在 GitHub 上上线了。对于元旦和寒假期间想要积累机器翻译背景知识、追踪前沿技术的同学来说,这份列表再合适不过了。 GitHub 链接:https://github.com/THUNLP-MT/MT-Reading-List 机器翻译(MT)是借机器之力「自动地将一种自然语言文本(源语言)翻译成另一种自然语言文本(目标语言)」的方法。使用机器做翻译的思想最早由 Warren Weaver 于 1949 年提出。时间进入二十一世纪,研究人员开发了基于神经网络的语言模型。近年来,神经机器翻译已经进入了应用阶段。 2018 年即将结束,在 18 年的最后一个工作日,清华大学自然语言处理组(THUNLP)整理了一份机器翻译论文的阅读清单奉献给大家。 该项目的主要贡献者 Zonghan Yang 表示: 这份阅读清单里回顾了统计机器翻译(SMT)时代的亮点论文,并概括了近期神经机器翻译(NMT)方向下的各个子领域,其中包括:模型架构、注意力机制、开放词表问题与字符级别神经机器翻译、训练准则与框架、解码机制、低资源语言翻译、多语种机器翻译、先验知识融合、文档级别机器翻译、机器翻译中的鲁棒性、可视化与可解释性、公正性与多样性、机器翻译效率问题、语音翻译与同传翻译、多模态翻译、预训练方法、领域适配问题、质量估计、自动后处理、推导双语词典以及诗歌翻译。 过去三十多年来,人们见证了机器翻译的快速发展,尤其是数据驱动的方法,如统计机器翻译(SMT)和神经机器翻译(NMT),目前 NMT 占据了这个方向的主导地位。清华大学 NLP 组表示该列表目前可能还不完整,未来将继续增加论文并改进清单。 该论文列表接收内容可谓详尽。首先,对于时间不够充裕的人来说,THUNLP 为大家整理了 10 大必读论文。这十篇论文涉及统计机器学习的数学基础、机器翻译度量指标 BLEU、基于短语的统计机器翻译、Quoc V. Le 等提出的序列到序列学习方法(该方法引出了谷歌后来序列到序列(seq2seq)的 NMT 模型)、Adam 优化算法以及 Attention 机制等。 其中最新的一篇自然是谷歌大脑那篇标题吓人的《Attention Is All You Need》,该研究提出了目前广泛流行的 Transformer 机器翻译架构,详情参见机器之心的报道: 学界 | 机器翻译新突破:谷歌实现完全基于 attention 的翻译架构 在这之后,THUNLP 列出了机器翻译各细分领域的必读论文,分为统计机器学习和神经机器翻译两大类,其中最新数据已经统计到了 ICLR、AAAI 2019 在投的研究。 分类目录: Statistical Machine Translation Tutorials Word-based Models Phrase-based Models Syntax-based Models Discriminative Training System Combination Evaluation 统计机器翻译部分介绍了基本的模型:基于单词、短语、句法的 SMT 模型,以及训练方法和评估方法。 Neural Machine Translation Tutorials Model Architecture Attention Mechanism Open Vocabulary and Character-based NMT Training Objectives and Frameworks Decoding Low-resource Language Translation Semi-supervised Methods Unsupervised Methods Pivot-based Methods Data Augmentation Methods Data Selection Methods Transfer Learning & Multi-Task Learning Methods Meta Learning Methods Multilingual Language Translation Prior Knowledge Integration Word/Phrase Constraints Syntactic/Semantic Constraints Coverage Constraints Document-level Translation Robustness Visualization and Interpretability Fairness and Diversity Efficiency Speech Translation and Simultaneous Translation Multi-modality Pre-training Domain Adaptation Quality Estimation Automatic Post-Editing Word Translation and Bilingual Lexicon Induction Poetry Translation 神经机器翻译目前是机器翻译的主流。这部分介绍了 NMT 中的模型架构、注意力机制、训练准则和框架等与具体模型训练相关的内容,还介绍了低资源语言翻译、多语言翻译、篇章翻译等具体任务相关的研究,以及关于机器翻译系统鲁棒性、可视化、可解释性、公平性等的研究。 低资源语言翻译任务由于训练数据少而难度极高。这一两年来对低资源语言翻译任务的研究逐渐增多,相关研究大多采用半监督、无监督等方式。清华大学 NLP 组在这部分介绍了半监督、无监督、数据增强、迁移学习、多任务学习和元学习等方法。 篇章翻译同样是机器翻译领域的困难任务。这部分介绍了 2017 和 2018 年的新研究,包括清华大学和搜狗合作发表在 EMNLP 2018 的工作。在此文中,作者提出了一个基于自注意力翻译模型 Transformer 的篇章级别翻译模型,利用丰富的上下文信息来帮助进行句子的翻译,该模型对机器翻译领域篇章级别翻译质量的提升也有贡献。 这部分还涉及自动后编辑、诗歌翻译等内容,详细内容请查看该 GitHub repo。 前不久,清华大学 NLP 组还整理了图网络必读论文列表,参见: 清华大学孙茂松组:图神经网络必读论文列表 机器之心CES 2019专题报道即将到来,欢迎大家积极关注。 阅读原文

上一篇:2018-11-16_只有4%的公司让AI计划真正落地?如何成为AI马拉松领跑者 下一篇:2022-08-04_故宫IP再“出圈”,带来跨界科普的新体验

TAG标签:

11
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价