全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2020-07-30_艾伦人工智能研究所发布 AllenNLP 1.0 ,设计和评估新深度学习模型更容易

您的位置:首页 >> 新闻 >> 行业资讯

艾伦人工智能研究所发布 AllenNLP 1.0 ,设计和评估新深度学习模型更容易 作者 | Michael Schmitz 译者 | Sambodhi 策划&编辑 | 刘燕 AI2 已发布其免费 NLP 库的官方版本 v1。AllenNLP 使得为几乎任何自然语言处理问题设计和评估新的深度学习模型变得更加容易,同时还提供了在云端或笔记本计算机上轻松运行这些模型的基础架构。 本文最初发布在 Medium 博客,经原作者 Michael Schmitz 授权,InfoQ 中文站翻译并分享。 AllenNLP 1.0 现已发布 AllenNLP GitHub 项目地址:https://github.com/allenai/allennlp AllenNLP 是一个来自 AI2 的免费、开源的自然语言处理平台,该平台的设计初衷是让研究人员能够轻松地构建最先进的模型。AllenNLP 通过提供与研究人员熟悉的概念相关的抽象和 API,以及一套近期文献中的参考实现,加快了将想法转化为有效模型的速度。最近,AI2 发布了 AllenNLP 1.0,为社区提供了新的模型、更好的性能以及新的资源。 AllenNLP 1.0 版本是 AI2 工程团队工作几个月以来的成果(包括超过 500 次 GitHub 提交),代表了该库重要的成熟里程碑。AI2 已经改进了平台的几乎每个角落,从文档到添加新的 NLP 组件,再到调整 API,从而使它们可以更好地为社区提供长期服务。 AllenNLP 演示中的命名实体识别示例。 需要注意的是,目前 AllenNLP 需要 Python 3.6.1 或更高版本。安装 AllenNLP 的首选方式是通过 pip。只需在 Python 环境中运行 pip install allennlp 即可。AllenNLP 支持 Linux 和 Mac OSX,尚不支持 Windows。 AllenNLP 库于 2017 年发布,提供了自然语言组件,研究人员可以轻松地构建新模型。模型架构可以由高级配置语言清楚地指定,这也为科学家们提供了一种简单的方法来实验不同的架构和参数。自发布以来,AllenNLP 已经发展到包括许多模型的参考实现,有 超过 20 个模型的交互式演示。GitHub 上 有 800 多个开源项目 使用了这个库,学术出版物也 引用了数百次。要了解更多关于 AllenNLP 平台的信息,请阅读 白皮书 或查看 AI2 的 新指南。 为了保持相关性,平台工程师与 AI2 的研究科学家紧密合作,他们正在自然语言处理和人工智能的前沿领域进行着更广泛的创新。ELMo 就是一个这样的例子,在论文《深层次上下文词表征》(Deep contextualized word representations )中已有描述,该论文首先展示了语言模型如何在各种任务中产生显著效果。(要了解更多关于这些模型及其影响的信息,请参阅《上下文词表征:将单词输入计算机》(Contextual Word Representations: Putting Words into Computers)AllenNLP 平台旨在加速新的研究,这些研究利用了 ELMo 等通用模块以及此后开发的其他模块。 版本 1.0 都包括什么? 版本 1.0 的主要亮点包括: 几个新模型,包括 TransformerQA、共指模型(Coreference model)、NMN 阅读理解模型、以及用于文本蕴涵(Textual entailment,TE)的 RoBERTa 模型。 译注:文本蕴涵(Textual entailment TE)在自然语言处理是一个文本片段之间的定向关系。拥有一个文本片段的含意时,可以从另一个文本如下关系。TE 的框架中,将会导致必须需要的文本被称为文本(T)和假设(H)作为分别。文本蕴涵是不一样的纯逻辑蕴涵,它有一个更宽松的定义:“T 推导到 H”(T?H),通常情况下,如果一个人阅读 T 将推断为 H 是最有可能的正确的关系。文本蕴含关系是有方向性的,如正向的“T 推导到 H”或反向的“H 推导到 T”。 新的《AllenNLP 指南》(AllenNLP Guide,),这是一个交互式资源,全面介绍了 AI2 的库和实验框架。整个库的性能改进,包括切换到原生 PyTorch 数据加载,通过 Apex 启用对 16 位浮点的支持,以及提高多 GPU 训练的效率。将模型拆分为单独的模型仓库(allennlp-models),从而提供一个具有较少依赖性的干净核心库。将实验框架从核心库组件中解耦,无需实验框架即可更轻松地使用该库,并简化了过程中的配置文件。 AllenNLP 演示中的文本蕴涵示例。 AllenNLP 的下一步 现在版本 1.0 已经发布,AI2 正在壮大他们的平台团队,这样他们就可以更好地为科学家提供构建最先进的自然语言处理模型所需的研究成果。 AI2 计划继续在性能改进和基础设施方面进行投资,以使建立一个广泛的演示库变得更容易,并与 AI2 研究科学家密切合作,以确保该库能够跟上他们的最新研究。 原文链接: https://medium.com/ai2-blog/allennlp-1-0-df0327445509 你也「在看」吗???

上一篇:2018-12-21_阿里首个深度学习框架XDL正式开源! 下一篇:2019-03-23_北大AI公开课独家整理!驭势科技吴甘沙:AI时代的自动驾驶趋势

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价