全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2019-07-04_Yann LeCun都推荐的深度学习资料合集!

您的位置:首页 >> 新闻 >> 行业资讯

Yann LeCun都推荐的深度学习资料合集! 作者 | Sebastian Raschka 译者 | Sambodhi 编辑 | Vincent AI 前线导读:本文是 GitHub 上的一个项目,截止到 AI 前线翻译之时,Star 数高达 7744 星,据说连深度学习界的大神 Yann LeCun 都为之点赞,可见该项目收集的深度学习资料合集质量之高,广受欢迎,AI 前线对本文翻译并分享,希望能够帮到有需要的读者。 更多优质内容请关注微信公众号“AI 前线”(ID:ai-front) 传统机器学习 感知器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb 逻辑回归 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb Softmax 回归(多项逻辑回归) TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb 多层感知器 多层感知器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb 具有 Dropout 的多层感知器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb 具有批量归一化的多层感知器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb 具有从头开始反向传播的多层感知器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb 卷积神经网络 基本 卷积神经网络 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb 具有 He 初始化的卷积神经网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb 概念 用等效卷积层替换全连接 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb 全卷积 全卷积神经网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb AlexNet CIFAR-10 上的 AlexNet PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb VGG 卷积神经网络 VGG-16 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb 在 CelebA 上训练的 VGG-16 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb 卷积神经网络 VGG-19 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb ResNet ResNet 与残差块 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb 在 MNIST 上训练的 ResNet-18 数字分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb 在 CelebA 上训练的 ResNet-18 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb 在 MNIST 上训练的 ResNet-34 数字分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb 在 CelebA 上训练的 ResNet-34 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb 在 MNIST 上训练的 ResNet-50 数字分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb 在 CelebA 上训练的 ResNet-50 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb 在 CelebA 上训练的 ResNet-101 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb 在 CIFAR-10 上训练的 ResNet-101 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-cifar10.ipynb 在 CelebA 上训练的 ResNet-152 性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb 网络中的网络 CIFAR-10 分类器网络中的网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb 度量学习 具有多层感知器的孪生网络 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb 自编码器 全连接自编码器 自编码器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb 卷积自编码器 具有解卷积 / 转置卷积的卷积自编码器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb 具有解卷积(不具有池化操作)的卷积自编码器 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb 具有最近邻插值的卷积自编码器 在 CelebA 上训练的具有最近邻插值的卷积自编码器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb 在 Quickdraw 上训练的具有最近邻插值的卷积自编码器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb 变分自编码器 变分自编码器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb 卷积变分自编码器 条件变分自编码器 条件变分自编码器(具有重构损失中的标签) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb 条件变分自编码器(不具有重构损失中的标签) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb 卷积条件变分自编码器(具有重构损失中的标签) PYTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb 卷积条件变分自编码器(不具有重构损失中的标签) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb 生成对抗网络 MNIST 上的全连接生成对抗网络 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb MNIST 上的卷积生成对抗网络 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb MNIST 上具有标签平滑的卷积生成对抗网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb 递归神经网络 多对一:情感分析 / 分类 简单的单层递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb 打包序列以忽略填充字符的简单单层递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb 具有长短期记忆网络单元的递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb 具有长短期记忆网络单元和经预训练的 GloVe 词向量的递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb 具有长短期记忆网络单元和 CSV 格式的自有数据集的递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb 具有 GRU 单元的递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb 多层双向递归神经网络(IMDB) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb 多对多 / 序列到序列 为生成新文本(Charles Dickens)的简单字符递归神经网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb 序数回归 序数回归卷积神经网络——CORAL w. ResNet34 on AFAD-Lite PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb 序数回归卷积神经网络——Niu et al. 2016 w. ResNet34 on AFAD-Lite PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb 序数回归卷积神经网络——Beckham and Pal 2016 w. ResNet34 on AFAD-Lite PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-beckham2016-afadlite.ipynb 要诀与技巧 周期学习率 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb PyTorch 工作流和机制 自定义数据集 为自定义数据集使用 PyTorch 数据集加载实用程序——CSV 文件转换为 HDF5 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb 为自定义数据集使用 PyTorch 数据集加载使用程序——来自 CelebA 的面部图像 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb 为自定义数据集使用 PyTorch 数据集加载使用程序——来自 Quickdraw 的图像 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb 为自定义数据集使用 PyTorch 数据集加载使用程序——来自街景门牌号(SVHN)数据集的图像 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb 为自定义数据集使用 PyTorch 数据集加载使用程序——亚洲人面部数据集(AFAD) PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-afad.ipynb 为自定义数据集使用 PyTorch 数据集加载使用程序——历史彩色图像 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader_dating-historical-color-images.ipynb 训练与预处理 生成验证集拆分 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/validation-splits.ipynb 具有固定内存的数据加载 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb 图像标准化 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb 图像转换示例 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb 具有自己的文本文件的 Char-RNN PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb 具有自己的 CSV 文件的情感分类递归神经网络 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb 并行计算 使用数据并行的多 GPU——VGG-16 CelebA 上的性别分类器 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb 其他 顺序 API 和钩子 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/mlp-sequential.ipynb 层内权重共享 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb 只使用 Matplotlib 在 Jupyter Notebook 绘制实时训练性能 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/plot-jupyter-matplotlib.ipynb Autograd 在 PyTorch 中获取中间变量的梯度 PyTorch:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb TensorFlow 工作流和机制 自定义数据集 为 Mini-batch 训练使用 NumPy NPZ Archives 进行组块图像数据集 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb 为 Mini-batch 使用 HDF5 进行存储图像数据集 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb 使用输入管道从 TFRecords 文件读取数据 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb 使用 Queue Runners 从硬盘直接馈入图像 TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb 使用 TensorFlow 的数据集 API TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb 训练和预处理 保存和加载训练过的模型——从 TensorFlow 检查点文件和 NumPy NPZ Archives TensorFlow:https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb 作者介绍 Sebastian Raschka,机器学习研究者、开源贡献者。《Python 机器学习》作者,威斯康星大学麦迪逊分校统计学助理教授。 原文链接: https://github.com/rasbt/deeplearning-models 你也「在看」吗??? 阅读原文

上一篇:2023-02-18_终于承认了,因存在事故风险,特斯拉在美召回 36 万辆配备“完全自动驾驶系统”的车辆 下一篇:2023-12-20_「转」百川发布全新Baichuan2-Turbo系列API产品:构建“大模型+搜索增强”技术栈,解决99% 定制化需求

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价