全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2021-05-21_如何用 Python 构建机器学习模型?

您的位置:首页 >> 新闻 >> 行业资讯

如何用 Python 构建机器学习模型? 作者 | Anello译者 | Sambodhi策划 | 凌敏本文,我们将通过 Python 语言包,来构建一些机器学习模型。构建机器学习模型的模板该 Notebook 包含了用于创建主要机器学习算法所需的代码模板。在 scikit-learn 中,我们已经准备好了几个算法。只需调整参数,给它们输入数据,进行训练,生成模型,最后进行预测。 1. 线性回归对于线性回归,我们需要从 sklearn 库中导入 linear_model。我们准备好训练和测试数据,然后将预测模型实例化为一个名为线性回归 LinearRegression 算法的对象,它是 linear_model 包的一个类,从而创建预测模型。之后我们利用拟合函数对算法进行训练,并利用得分来评估模型。最后,我们将系数打印出来,用模型进行新的预测。 # Import modules from sklearn import linear_model # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted_variable x_test = test_dataset_precictor_variables # Create linear regression object linear = linear_model.LinearRegression() # Train the model with training data and check the score linear.fit(x_train, y_train) linear.score(x_train, y_train) # Collect coefficients print('Coefficient: \n', linear.coef_) print('Intercept: \n', linear.intercept_) # Make predictions predicted_values = linear.predict(x_test) 2. 逻辑回归在本例中,从线性回归到逻辑回归唯一改变的是我们要使用的算法。我们将 LinearRegression 改为 LogisticRegression。 # Import modules from sklearn.linear_model import LogisticRegression # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted_variable x_test = test_dataset_precictor_variables # Create logistic regression object model = LogisticRegression() # Train the model with training data and checking the score model.fit(x_train, y_train) model.score(x_train, y_train) # Collect coefficients print('Coefficient: \n', model.coef_) print('Intercept: \n', model.intercept_) # Make predictions predicted_vaues = model.predict(x_teste) 3. 决策树我们再次将算法更改为 DecisionTreeRegressor: # Import modules from sklearn import tree # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted_variable x_test = test_dataset_precictor_variables # Create Decision Tree Regressor Object model = tree.DecisionTreeRegressor() # Create Decision Tree Classifier Object model = tree.DecisionTreeClassifier() # Train the model with training data and checking the score model.fit(x_train, y_train) model.score(x_train, y_train) # Make predictions predicted_values = model.predict(x_test) 4. 朴素贝叶斯我们再次将算法更改为 DecisionTreeRegressor: # Import modules from sklearn.naive_bayes import GaussianNB # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Create GaussianNB object model = GaussianNB() # Train the model with training data model.fit(x_train, y_train) # Make predictions predicted_values = model.predict(x_test) 5. 支持向量机在本例中,我们使用 SVM 库的 SVC 类。如果是 SVR,它就是一个回归函数: # Import modules from sklearn import svm # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Create SVM Classifier object model = svm.svc() # Train the model with training data and checking the score model.fit(x_train, y_train) model.score(x_train, y_train) # Make predictions predicted_values = model.predict(x_test) 6.K- 最近邻在 KneighborsClassifier 算法中,我们有一个超参数叫做 n_neighbors,就是我们对这个算法进行调整。 # Import modules from sklearn.neighbors import KNeighborsClassifier # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Create KNeighbors Classifier Objects KNeighborsClassifier(n_neighbors = 6) # default value = 5 # Train the model with training data model.fit(x_train, y_train) # Make predictions predicted_values = model.predict(x_test) 7.K- 均值# Import modules from sklearn.cluster import KMeans # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Create KMeans objects k_means = KMeans(n_clusters = 3, random_state = 0) # Train the model with training data model.fit(x_train) # Make predictions predicted_values = model.predict(x_test) 8. 随机森林# Import modules from sklearn.ensemble import RandomForestClassifier # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Create Random Forest Classifier objects model = RandomForestClassifier() # Train the model with training data model.fit(x_train, x_test) # Make predictions predicted_values = model.predict(x_test) 9. 降维# Import modules from sklearn import decomposition # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Creating PCA decomposition object pca = decomposition.PCA(n_components = k) # Creating Factor analysis decomposition object fa = decomposition.FactorAnalysis() # Reduc the size of the training set using PCA reduced_train = pca.fit_transform(train) # Reduce the size of the training set using PCA reduced_test = pca.transform(test) 10. 梯度提升和 AdaBoost# Import modules from sklearn.ensemble import GradientBoostingClassifier # Create training and test subsets x_train = train_dataset_predictor_variables y_train = train_dataset_predicted variable x_test = test_dataset_precictor_variables # Creating Gradient Boosting Classifier object model = GradientBoostingClassifier(n_estimators = 100, learning_rate = 1.0, max_depth = 1, random_state = 0) # Training the model with training data model.fit(x_train, x_test) # Make predictions predicted_values = model.predict(x_test) 我们的工作将是把这些算法中的每一个块转化为一个项目。首先,定义一个业务问题,对数据进行预处理,训练算法,调整超参数,获得可验证的结果,在这个过程中不断迭代,直到我们达到满意的精度,做出理想的预测。 原文链接: https://levelup.gitconnected.com/10-templates-for-building-machine-learning-models-with-notebook-282c4eb0987f 你也「在看」吗??? 阅读原文

上一篇:2019-11-13_阿里姜伟华:实时数据中台,如何能做得更好? 下一篇:2020-10-13_未来五年的AI领域科技亮点,都在这里了|活动推荐

TAG标签:

15
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价