全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2024-01-28_OpenAI新模型用的嵌入技术被网友扒出来了

您的位置:首页 >> 新闻 >> 行业资讯

OpenAI新模型用的嵌入技术被网友扒出来了 机器之心报道 编辑:蛋酱 学起来吧。 前几天,OpenAI 来了一波重磅更新,一口气宣布了 5 个新模型,其中就包括两个新的文本嵌入模型。 我们知道,嵌入是表示自然语言或代码等内容中概念的数字序列。嵌入使得机器学习模型和其他算法更容易理解内容之间的关联,也更容易执行聚类或检索等任务。 使用更大的嵌入(比如将它们存储在向量存储器中以供检索)通常要比更小的嵌入消耗更高的成本、以及更多的算力、内存和存储。而 OpenAI 此次推出的两个文本嵌入模型分别是更小且高效的 text-embedding-3-small 模型和更大且更强大的 text-embedding-3-large 模型。 这两个新嵌入模型都使用一种技术进行训练,允许开发人员权衡使用嵌入的性能和成本。具体来说,开发者通过在 dimensions API 参数中传递嵌入而不丢失其概念表征属性,从而缩短嵌入(即从序列末尾删除一些数字)。例如在 MTEB 基准上,text-embedding-3-large 可以缩短为 256 的大小, 同时性能仍然优于未缩短的 text-embedding-ada-002 嵌入(大小为 1536)。 这一技术应用非常灵活:比如当使用仅支持最高 1024 维嵌入的向量数据存储时,开发者现在仍然可以使用最好的嵌入模型 text-embedding-3-large 并指定 dimensions API 参数的值为 1024,使得嵌入维数从 3072 开始缩短,牺牲一些准确度以换取更小的向量大小。 OpenAI 所使用的「缩短嵌入」方法,随后引起了研究者们的广泛注意。 人们发现,这种方法和 2022 年 5 月的一篇论文所提出的「Matryoshka Representation Learning」方法是相同的。 OpenAI 的新嵌入模型更新背后隐藏的是 @adityakusupati 等人提出的一种很酷的嵌入表征技术。 而 MRL 的一作 Aditya Kusupati 也现身说法:「OpenAI 在 v3 嵌入 API 中默认使用 MRL 用于检索和 RAG!其他模型和服务应该很快就会迎头赶上。」 那么 MRL 到底是什么?效果如何?都在下面这篇 2022 年的论文里。 MRL 论文介绍 论文标题:Matryoshka Representation Learning 论文链接:https://arxiv.org/pdf/2205.13147.pdf 研究者提出的问题是:能否设计一种灵活的表征方法,以适应计算资源不同的多个下游任务? MRL 通过以嵌套方式对 O (log (d)) 低维向量进行显式优化在同一个高维向量中学习不同容量的表征,因此被称为 Matryoshka「俄罗斯套娃」。MRL 可适用于任何现有的表征 pipeline,并可轻松扩展到计算机视觉和自然语言处理中的许多标准任务。 图 1 展示了 MRL 的核心理念以及所学习 Matryoshka 表征的自适应部署设置: Matryoshka 表征的第一个 m-dimensions(m∈[d])是一个信息丰富的低维向量,不需要额外的训练成本,其精确度不亚于独立训练的 m 维表征法。Matryoshka 表征的信息量随着维度的增加而增加,形成了一种从粗到细的表征法,而且无需大量的训练或额外的部署开销。MRL 为表征向量提供了所需的灵活性和多保真度,可确保在准确性与计算量之间实现近乎最佳的权衡。凭借这些优势,MRL 可根据精度和计算约束条件进行自适应部署。 在这项工作中,研究者将重点放在了现实世界 ML 系统的两个关键构件上:大规模分类和检索。 在分类方面,研究者使用了自适应级联,并使用由 MRL 训练的模型产生的可变大小表征,从而大大降低了达到特定准确率所需的嵌入式平均维数。例如,在 ImageNet-1K 上,MRL + 自适应分类的结果是,在精度与基线相同的情况下,表征大小最多可缩小 14 倍。 同样地,研究者在自适应检索系统中也使用了 MRL。在给定一个查询的情况下,使用查询嵌入的前几个 dimensions 来筛选检索候选对象,然后连续使用更多的 dimensions 对检索集进行重新排序。与使用标准嵌入向量的单次检索系统相比,这种方法的简单实现可实现 128 倍的理论速度(以 FLOPS 计)和 14 倍的墙上时钟时间速度;需要注意的是,MRL 的检索精度与单次检索的精度相当(第 4.3.1 节)。 最后,由于 MRL 明确地学习了从粗到细的表征向量,因此直观地说,它应该在不同 dimensions 之间共享更多的语义信息(图 5)。这反映在长尾持续学习设置中,准确率最多可提高 2%,同时与原始嵌入一样稳健。此外,由于 MRL 具有粗粒度到细粒度的特性,它还可以用作分析实例分类难易程度和信息瓶颈的方法。 更多研究细节,可参考论文原文。 ?THE END 转载请联系本公众号获得授权 投稿或寻求报道:content@jiqizhixin.com

上一篇:2025-07-25_解道奥赛题成本5000美元?陶哲轩警告,AI下一步要规模化的「更便宜」 下一篇:2022-07-29_普通人的老与养老|科技助老圆桌派(一)

TAG标签:

19
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价