全国免费咨询:

13245491521

VR图标白色 VR图标黑色
X

中高端软件定制开发服务商

与我们取得联系

13245491521     13245491521

2020-05-04_什么是小样本学习?这篇综述文章用166篇参考文献告诉你答案

您的位置:首页 >> 新闻 >> 行业资讯

什么是小样本学习?这篇综述文章用166篇参考文献告诉你答案 机器之心报道 参与:魔王 什么是小样本学习?它与弱监督学习等问题有何差异?其核心问题是什么?来自港科大和第四范式的这篇综述论文提供了解答。数据是机器学习领域的重要资源,在数据缺少的情况下如何训练模型呢?小样本学习是其中一个解决方案。来自香港科技大学和第四范式的研究人员综述了该领域的研究发展,并提出了未来的研究方向。 这篇综述论文已被 ACM Computing Surveys 接收,作者还建立了 GitHub repo,用于更新该领域的发展。 论文地址:https://arxiv.org/pdf/1904.05046.pdf GitHub 地址:https://github.com/tata1661/FewShotPapers 机器学习在数据密集型应用中取得了很大成功,但在面临小数据集的情况下往往捉襟见肘。近期出现的小样本学习(Few-Shot Learning,FSL)方法旨在解决该问题。FSL 利用先验知识,能够快速泛化至仅包含少量具备监督信息的样本的新任务中。 这篇论文对 FSL 方法进行了综述。首先,该论文给出了 FSL 的正式定义,并厘清了它与相关机器学习问题(弱监督学习、不平衡学习、迁移学习和元学习)的关联和差异。然后指出 FSL 的核心问题,即经验风险最小化方法不可靠。 基于各个方法利用先验知识处理核心问题的方式,该研究将 FSL 方法分为三大类: 数据:利用先验知识增强监督信号; 模型:利用先验知识缩小假设空间的大小; 算法:利用先验知识更改给定假设空间中对最优假设的搜索。 最后,这篇文章提出了 FSL 的未来研究方向:FSL 问题设置、技术、应用和理论。 论文概览 该综述论文所覆盖的主题见下图: 我们选取介绍了该综述论文中的部分内容,详情参见原论文。什么是小样本学习? FSL 是机器学习的子领域。 我们先来看机器学习的定义: 计算机程序基于与任务 T 相关的经验 E 学习,并得到性能改进(性能度量指标为 P)。 基于此,该研究将 FSL 定义为: 小样本学习是一类机器学习问题,其经验 E 中仅包含有限数量的监督信息。 下图对比了具备充足训练样本和少量训练样本的学习算法: FSL 方法分类 根据先验知识的利用方式,FSL 方法可分为三类: FSL 方法解决少样本问题的不同角度。 基于此,该研究将现有的 FSL 方法纳入此框架,得到如下分类体系: 数据 此类 FSL 方法利用先验知识增强数据 D_train,从而扩充监督信息,利用充足数据来实现可靠的经验风险最小化。 如上图所示,根据增强数据的来源,这类 FSL 方法可分为以下三个类别: 模型 基于所用先验知识的类型,这类方法可分为如下四个类别: 算法 根据先验知识对搜索策略的影响,此类方法可分为三个类别: 文章最后从问题设置、技术、应用和理论四个层面探讨了小样本学习领域的未来发展方向。 本文为机器之心报道,转载请联系本公众号获得授权。 ?------------------------------------------------加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com投稿或寻求报道:content@jiqizhixin.com广告 & 商务合作:bd@jiqizhixin.com

上一篇:2020-06-07_上交大本科毕业,获ICRA最佳学生论文、机器人控制双奖项,这个小哥的机械手玩球技术娴熟 下一篇:2023-03-23_当GPT-4学会看图文,一场生产力革命已势不可挡

TAG标签:

18
网站开发网络凭借多年的网站建设经验,坚持以“帮助中小企业实现网络营销化”为宗旨,累计为4000多家客户提供品质建站服务,得到了客户的一致好评。如果您有网站建设网站改版域名注册主机空间手机网站建设网站备案等方面的需求...
请立即点击咨询我们或拨打咨询热线:13245491521 13245491521 ,我们会详细为你一一解答你心中的疑难。
项目经理在线

相关阅读 更多>>

猜您喜欢更多>>

我们已经准备好了,你呢?
2022我们与您携手共赢,为您的企业营销保驾护航!

不达标就退款

高性价比建站

免费网站代备案

1对1原创设计服务

7×24小时售后支持

 

全国免费咨询:

13245491521

业务咨询:13245491521 / 13245491521

节假值班:13245491521()

联系地址:

Copyright © 2019-2025      ICP备案:沪ICP备19027192号-6 法律顾问:律师XXX支持

在线
客服

技术在线服务时间:9:00-20:00

在网站开发,您对接的直接是技术员,而非客服传话!

电话
咨询

13245491521
7*24小时客服热线

13245491521
项目经理手机

微信
咨询

加微信获取报价